NanDigits

Design Automation A Practical Way to Do Netlist ECO

Gates On the Fly User Manual V11.6

https://nandigits.com/gof_manual.php

index.htm

GOF User Manual

Table of Contents

Table of Contents 3
1 Introduction 12
1.1 Download and Install GOF 12
1.2 License and Setup 12
2 GOF ECO: Functional ECO Tool 12
2.1 Netlist ECO Solutions 12
2.2 Automatic Full-Layers Functional ECO Flow 13
2.2.1 Files and data requirements in automatic functional ECO 13
2.2.2 Steps to do automatic functional ECO 13
2.2.3 Automatic Functional ECO example script 14
2.2.4 Run and debug in automatic functional ECO 14
2.2.5 Synthesize sub-modules only 14
2.2.6 SVF files support 15
2.2.7 Multibit flops in ECO 15
2.2.8 ECO Retargeting 16
2.2.9 DFT Constraints 16
2.2.10 DFT Design Rule Checker 17
2.2.11 No Exact Pin Match 19
2.2.12 Flip-flop Phase Inverted 20
2.2.13 Tie High Tie Low nets 20
2.2.14 Stitch new flops into scan chain 20
2.2.15 Add a new module 21
2.2.16 Note in RTL modification and re-synthesis 22
2.2.16.1 Keep sequential signal name 22
2.2.16.2 Use the same synthesis constraints 22

2.2.17 Debug non-equivalence in large ECO 22
2.2.18 Check design after ECO 22
2.2.19 Formality help files generation 22
2.2.20 RTL Guided ECO Flow 22
2.2.21 Internal RTL to RTL Guidance 22
2.2.21.1 Files and data requirements in RTL guided ECO 23

2.2.21.2 Steps to do RTL guided ECO 23
2.2.21.3 RTL guided ECO example script 23

2.2.21.4 Synthesize Reference RTL to Reference Netlist 23

2.2.22 Third Party RTL LEC Result Processing 24

2.3 Standard Cells Automatic Metal Only ECO Flow 24
2.3.1 Metal Only Functional ECO: Standard Cells Spare Gates Mapping 25
2.3.1.1 Introduction 25

2.3.1.2 Steps in Metal Only ECO 25

2.3.1.3 Spare Gates and Combinations 25

2.3.1.4 Mapping Process 25

2.3.1.5 Handling Different Flop Types 25

2.3.1.6 Conclusion 26

2.3.2 Spare Gates Synthesis 26
2.3.3 Spare Gates Number and Distribution 26
2.3.4 Files and data requirements in Metal Only ECO 26
2.3.5 Steps to do automatic Metal Only ECO 26
2.3.6 Example GOF script for Metal Only ECO 26
2.3.7 Run and debug for Metal Only ECO 27
2.3.8 Gated clocks in Automatic Metal Only ECO 27

2.4 Metal Configurable Gate Array Cells ECO Flow 27
2.4.1 Gate Array Cell Base Tile 27
2.4.2 Gate Array Automatic Mapping 28
2.4.3 Files and data requirements in Gate Array ECO 28
2.4.4 Steps to do gate array spare cells ECO 28
2.4.5 Example GOF script for gate array cells ECO flow 29
2.4.6 TCL output file format after Gate Array ECO 29
2.4.7 Run and Debug in Gate Array ECO 29

2.5 Find Equal Nets between RTL and Netlist 29
2.5.1 Example script to find equal nets 29
2.5.2 GUI Mode to find equal nets 29

2.6 Script Mode Full Layers Manual ECO Flow 29
2.6.1 Files and data requirements in Manual ECO 30
2.6.2 Steps to do Manual ECO In Scripts 30
2.6.3 Manual ECO APIs list 30
2.6.4 Example GOF script for Manual ECO 30
2.6.5 Run and debug in Manual ECO 30

© 2025 NanDigits Design Automation All Rights Reserved. Page 2

GOF User Manual

2.6.6 Handle repetitive work
2.6.7 Special characters
2.7 Script Mode Metal Only Manual ECO Flow
2.7.1 Files and data requirements in Metal Only Manual ECO
2.7.2 Example GOF script for Manual Metal Only ECO
2.7.3 Run and debug in Metal Only Manual ECO
2.8 GUI Mode Full Layers ECO Flow
2.8.1 Start up GOF in GUI Mode
2.8.2 Create Partial Schematic
2.8.3 Do ECO on schematic
2.8.4 Save ECO in GUI Mode
2.9 GUI Mode Metal Only ECO Flow
2.9.1 Methods for Metal Only ECO
2.9.2 Setup and use cases
2.10 Report Timing
2.10.1 Report Timing APIs
2.10.2 Timing before ECO
2.10.3 Timing after ECO
3 GOF Formal: Fault Verification Tool
3.1 GOF Formal
3.1.1 Single Point Fault and Latent Fault
3.1.2 Fault Model
3.1.3 Cone of Influence
3.1.4 SPFM and LFM Calculation
3.1.5 Rough Method by COI Analysis
3.1.6 Faults Injection Formal Verification
3.1.7 FUSA Metrics Improvement
3.2 FUSA Example Code
3.2.1 Script for SPFM and LFM Calculation
3.2.2 FUSA Debug One Fault
4 Script Mode Detail Features
4.1 GOF Script Interface
4.1.1 Get Help for APIs
4.1.2 GOF Script APIs feature list
4.1.3 Full API list
4.1.4 API grouping
4.1.4.1 Netlist Browse APIs
4.1.4.2 Automatic ECO APIs
4.1.4.3 File IO APIs
4.1.4.4 Manual ECO APIs
4.1.4.5 Al Agent enabled APIs
4.1.5 APIs Detail usage
4.2 String Handling In Script Mode
4.2.1 Single quote and double quote
4.2.2 Instance and net with backslash
4.3 Run and debug GOF script
4.3.1 Command line
4.3.2 GOF Shell
4.3.3 Run in GUI mode
4.3.4 Fast schematic launch
4.3.5 Break points for debug
4.3.6 Counter-example back-annotated to schematic
4.4 Typical Manual ECO operations
4.4.1 Insert gate to port
4.4.1.1 Insert an invert to input port
4.4.1.2 Insert to output port
4.4.1.3 Insert inverts to multiple ports
4.4.2 Insert gate to register instance pin
4.4.2.1 Insert invert to flop data pin
4.4.2.2 Insert invert to flop output pin
4.4.2.3 Insert MUX to data pin of multiple flops
4.4.3 Change flops to other type
4.4.3.1 Change non-reset flop type to resettable flop
4.4.4 Insert gate to hierarchical instance pin
4.4.4 1 Insert inverts to hierarchical instance pins
4.4.4.2 Insert AND to hierarchical instance pins
5 GOF LEC: Logic Equivalence Checking Tool
5.1 GOF LEC Overview
5.1.1 Netlist to Netlist LEC

© 2025 NanDigits Design Automation

30
30
31
31
31
31
31
31
31
32
33
33
33
33
33
33
33
33
34
34
34
34
34
35
35
36
36
36
36
36
36
36
37
37
37
38
38
39
39
39
39
39
39
39
39
40
40
40
40
40
40
41
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
43
43

All Rights Reserved. Page 3

GOF User Manual

5.1.2 RTL to Netlist LEC 43
6 GOF Debug: Netlist Debug and Schematic 43
6.1 GofViewer 43
6.1.1 Log Window 44
6.1.2 File Menu 44
6.1.2.1 Load Design 44
6.1.2.2 Reload Design 44
6.1.2.3 Open Other Netlist 44
6.1.2.4 Open Log Window 44
6.1.2.5 Exit 44
6.1.3 Find Menu 44
6.1.3.1 Search 44
6.1.3.2 Goto Line Number 44
6.1.3.3 Report Area 44
6.1.3.4 Report Leakage 44
6.1.3.5 Report Leaf Cells 44
6.1.3.6 Report Submodules 44
6.1.3.7 Statistic of Current Design 44
6.1.3.8 List Library 44
6.1.3.9 List Context for Leaf Cell 45
6.1.4 Commands Menu 45
6.1.4.1 Launch GofTrace Schematic 45
6.1.4.2 Launch GofTrace with Gate 45
6.1.4.3 Launch Layout Viewer 45
6.1.4.4 Launch GofCall Script Interface 45
6.1.4.5 Spare Cells 45
6.1.5 Options Menu 45
6.1.5.1 Hierarchy Window Font 45
6.1.5.2 Netlist Window Font 45
6.1.5.3 Dump Waveform Restore File 45
6.1.5.4 Setup 45
6.1.6 Help Menu 45
6.1.6.1 General 46
6.1.6.2 About 46
6.1.6.3 nandigits.co/gof manual.php 46
6.1.6.4 Read Ethernet Mac Address 46
6.1.7 Keyboard Shortcuts 46
6.1.7.1 Access Menu 46
6.1.7.2 Functions access 46
6.1.8 Selection Status 46
6.1.9 Netlist Window Pop Menu 46
6.1.9.1 Search 46
6.1.9.2 Copy Selected to 46
6.1.9.3 Find Equal Nets of the selected Reference Net 46
6.1.9.4 Driver of the selected net 46
6.1.9.5 List Connectivity of the selected net 46
6.1.9.6 List Fanin EndPoints 46
6.1.9.7 List Fanout EndPoints 46
6.1.9.8 Parent Module 46
6.1.9.9 List Context 46
6.1.10 Hierarchy Window Pop Menu 46
6.1.10.1 Show Definition 46
6.1.10.2 Show Calling 46
6.1.10.3 Report Area of the selected design 46
6.1.10.4 Report Leakage of the selected design 47
6.1.10.5 Report Leaf Cells of the selected design 47
6.1.10.6 Report Submodules of the selected design 47
6.1.10.7 Statistic of the selected design 47
6.1.10.8 Edit Module of the selected design 47
6.1.10.9 Save Module of the selected design 47
6.1.10.10 Goto Line Number 47

6.2 GofTrace 47
6.2.1 Mouse buttons usage 47
6.2.1.1 Mouse Left Button 47
6.2.1.2 Mouse Middle Button 47
6.2.1.3 Mouse Right Button 47
6.2.2 File Menu 47
6.2.2.1 Save 47
6.2.2.2 Open 47

© 2025 NanDigits Design Automation All Rights Reserved. Page 4

GOF User Manual

6.2.2.3 Print
6.2.2.4 Exit
6.2.3 Schematic Menu
6.2.3.1 New Schematic
6.2.3.2 List Gate
6.2.3.3 Load Gate
6.2.3.4 Load Gate Driving Net
6.2.3.5 List Selected Instances
6.2.3.6 List Selected Wires
6.2.3.7 List Selected Modules
6.2.3.8 List Selected Instances Definitions
6.2.3.9 List Selected Gates Types
6.2.3.10 Zoom In
6.2.3.11 Zoom Out
6.2.3.12 Zoom to
6.2.3.13 Find Gates on Schematic
6.2.3.14 Find Nets on Schematic
6.2.3.15 Undo Schematic Operations
6.2.3.16 Place and Route
6.2.3.17 Create PS/PDF File
6.2.4 Commands Menu
6.2.4.1 View Gates in Layout
6.2.4.2 Load Layout Files
6.2.4.3 Launch GofCall Script Interface
6.2.4.4 Spare Cells
6.2.5 Options Menu
6.2.5.1 Increase Font Size
6.2.5.2 Decrease Font Size
6.2.5.3 Show Port
6.2.5.4 Show Wire
6.2.5.5 Show Title
6.2.5.6 Show Type
6.2.5.7 Show Connections
6.2.5.8 Show Comment
6.2.5.9 Dump Waveform Restore File
6.2.5.10 Save String to Clipboard
6.2.5.11 Cursor Mode
6.2.5.12 Line Edit Mode
6.2.5.13 Setup
6.2.6 Help Menu
6.2.6.1 General
6.2.6.2 About
6.2.6.3 nandigits.co/gof_manual.php
6.2.7 Keyboard Shortcuts
6.2.7.1 Access Menu
6.2.7.2 Functions access
6.2.8 Selection Status
6.2.9 GofTrace Pop Menu
6.2.9.1 Driver Until Non Buffer
6.2.9.2 Drivers of Logic Cone
6.2.9.3 Copy Selected to
6.2.9.4 Trace Scan Chain
6.2.9.5 Nets Equivalence Check
6.2.9.6 Find Equal Nets of the selected Net
6.2.9.7 Add Comments
6.2.9.8 Find Gates on Schematic
6.2.9.9 Find Nets on Schematic
6.2.9.10 Place and Route
6.2.9.11 Find selected in GofViewer
6.2.9.12 Edit Gate Display
6.2.9.13 List Logic for the Selected Leaf Cell
6.2.9.14 List Context for the Selected Leaf Cell
6.2.9.15 List Definition for the Selected Instance
6.2.9.16 Load Instance Similar to the Selected Instance
6.2.9.17 Equivalent Symbol
6.2.9.18 Delete
6.3 GUI GofECO
6.3.1 ECO Menu
6.3.1.1 Enable ECO and ECO Preferences

© 2025 NanDigits Design Automation

All Rights Reserved.

47
47
47
47
47
47
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
50
50
50
50
50
50
50
50
51
51
51
51
51
51
51
51
51
51
51

Page 5

GOF User Manual

6.3.1.2 Insert Gates
6.3.1.3 Replace Gates
6.3.1.4 Add Gates
6.3.1.5 Delete Selected Items
6.3.1.6 Upsize Drive Strength
6.3.1.7 Downsize Drive Strength
6.3.1.8 Undo ECO Operations
6.3.1.9 Add Connection
6.3.1.10 Save ECO
6.3.2 Metal Only ECO
6.3.2.1 Metal ECO, mode 1
6.3.2.2 Metal ECO, mode 2
6.3.2.3 Metal ECO, mode 3
6.3.2.4 Metal ECO, mode 4
6.4 LayoutViewer
6.4.1 File Menu
6.4.1.1 Capture in PDF
6.4.1.2 Exit
6.4.2 Commands Menu
6.4.2.1 Clear Circuit Markers
6.4.2.2 Clear Search Markers
6.4.2.3 New Schematic
6.4.3 OptionsMenu
6.4.3.1 Show Grid
6.4.3.2 Show Instance
6.4.3.3 Show Module
6.4.3.4 Setup
6.4.4 Help Menu
6.4.4.1 Help on LayoutViewer
6.4.5 LayoutViewer Pop Menu
6.4.5.1 Clear Circuit Markers
6.4.5.2 Clear Searching Markers
6.4.5.3 Copy Selected to
6.4.6 Keyboard and mouse combination
6.4.6.1 Ctrl key to measure length
6.4.6.2 Shift key to select multiple markers
6.4.7 Mouse operations
6.4.8 Select color buttons
6.4.9 Search function
7 GOF Al: Agentic Al Platform
7.1 Al-Powered Natural Language ECO: Revolutionizing Netlist Modifications
7.1.1 How Natural Language Translation Works
7.1.2 Benefits of Al-Powered Natural Language ECO
7.1.3 Example code
7.2 Al-Powered Spec-to-RTL Conversion and Incremental Modification
7.2.1 Full Specification to RTL Generation
7.2.2 Incremental RTL Modification from Partial Specifications
7.2.3 Ensuring High RTL Accuracy with a Multi-faceted Scoring System
7.2.4 Example code
7.3 Non-equivalent points debug automation by Al Agent
7.3.1 Al Agent Transformation
7.3.2 Example code
7.3.3 Future Work
8 Appendix A
8.1 APIs Detail Usage
add_mapped_instance
ai_debug_noneq
buffer
change_gate
change_net
change_pin
change_port
check_design
compare
compare_nets
convert_gated_clocks
create_clock
create_equation
create_pin_mapping_json file

© 2025 NanDigits Design Automation

All Rights Reserved.

52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
54
54
54
54
54
54
55
95
55
95
95
55
95
56
56
56
57
57
57
57
57
57
57
58
58
58
59
59
59
59
59
59

Page 6

GOF User Manual

create_reset 59
current_design 59
current_instance 59
del_gate 59
del _net 59
del_port 60
dft_drc 60
do_auto_change 60
do_smart_query 60
elab_rtl 60
elaborate 60
exist_inst 60
exist_wire 60
find_equal_nets 60
fix_design 60
fix_logic 60
flatten_modules 61
get_cell _cofactors 61
get cell_info 61
get_cells 61
get_conns 62
get _coord 62
get_definition 62
get_driver 62
get_drivers 62
get_instance 63
get_instances 63
get leaf pin dir 63
get_leafs_count 63
get lib_cells 63
get_loads 63
get loads phase 64
get_logic_cone 64
get_modules 64
get_net of 64
get nets 64
get_path 64
get_pins 64
get_ports 64
get_ref 65
get_resolved 65
get_roots 65
get_scan_flop 65
get_spare_cells 65
get_spare_in_use 65
gexit 65
gof version 66
gprint 66
insert_gate 66
is_leaf 66
is_pin_masked 66
is_scan_flop 66
is_seq 66
list_wireload 66
map_spare_cells 66
new_gate 67
new_net 67
new_port 67
place_gate 67
place port 67
pop_top 67
post_recovery 67
preserve_modules 67
push_top 68
read_ctl 68
read_def 68
read_design 68
read file 68
read_lef 68

© 2025 NanDigits Design Automation All Rights Reserved. Page 7

GOF User Manual

read_library 68
read_rtl 69
read_rtlpatch 69
read_sdf 69
read_sub_module netlist 69
read_sub_module_svf 69
read_svf 69
read_vcd 70
rename_net 70
replace_sub_module netlist 70
replace_sub_module svf 70
report_eco 70
report_spares 70
report_timing 70
restore_session 71
rtl_compare 71
rtl_lec 71
run 71
run_lec 71
run_nl 71
save_session 71
sch 71
set_ai_config 71
set_ai_remote server 71
set_auto_fix_floating 72
set_bfix 72
set_blackbox 72
set_bound_opti 72
set_buffer 72
set_buffer_distance 72
set_check_isolation 72
set_clock uncertainty 72
set_cluster _command 72
set_cluster_timeout 72
set_constraints 72
set_cutpoint_thresh 73
set_cutpoint_ultra 73
set_define 73
set_detect_points 73
set_disable_cross_hierarchy _merge 73
set_disable_lib_cache 73
set_dont_fix_modules 73
set_dont_use 73
set_eco_effort 74
set_eco_point_json 74
set_equal 74
set_error_out 74
set_exit_on_error 74
set_exit_on_warning 74
set_false path 74
set_floating_as zero 74
set_flop default_eco 74
set_flop_merge_enable 74
set_high_effort 74
set_ignore_instance 75
set_ignore_network 75
set_ignore_output 75
set_ignore_pin 75
set_inc_dirs 75
set_initial_trans 75
set_input_delay 76
set_input_transition 76
set_inside_mod 76
set_inst 76
set_inv 76
set_invert 76
set_keep format 76
set_keep tree 76
set_keypoints_rep_in_ref 76

© 2025 NanDigits Design Automation All Rights Reserved. Page 8

GOF User Manual

set_leaf 76
set_log file 76
set_low_effort 77
set_mapped_point 77
set_mapping_method 77
set_max_lines 77
set_max_loop 77
set_mod2mod 77
set mu 77
set_multibit_blasting 77
set_multibit_output 77
set_net_constant 77
set_no_patch_opt 77
set_noexact_pin_match 77
set_observe_points 78
set_one_fault 78
set_only use 78
set_output_delay 78
set_output_load 78
set_phase_adjust_en 78
set_phase_inv 78
set_physical_aware 78
set_pin_constant 78
set _power 79
set_preserve 79
set_quiet 79
set_recovery_distance 79
set_remove_undsc_in_ref 79
set_rtl_eco full_hier _fan 79
set_save _mapped_instance 79
set_scan_pairs 79
set sn vs rn 79
set_solver_timeout 79
set_tiehi_net 80
set_tielo net 80
set_time_frame_limit 80
set_top 80
set_top_ref 80
set_tree 80
set_user_match 80
set_verbose 80
set_wireload 80
set_write_verilog_remove_backslash 80
set_write_verilog_uniquify 81
set_xm_flop_merge_enable 81
setup_eco 81
source 81
spec_to rtl 81
start_gui 81
stitch_scan_chain 81
suppress_errors 81
suppress_warnings 81
swap_inst 81
undo_eco 81
verify_faults 81
verify _state 82
write_compare_points 82
write_dcsh 82
write_formality help_files 82
write_perl 82
write_soce 82
write_spare_file 82
write_tcl 82
write_verilog 82
9 Appendix B 83
9.1 GOF Command Options 83
9.2 Command line Examples 83
10 Appendix C 84
10.1 Fatal codes 84

© 2025 NanDigits Design Automation All Rights Reserved. Page 9

GOF User Manual

10.2 Error codes 84
10.3 Warning codes 85
10.4 GUI warning codes 85

© 2025 NanDigits Design Automation All Rights Reserved. Page 10

GOF User Manual

ctl

1 Introduction

The GOF platform is comprised of four powerful functional components: GOF ECO, GOF Formal, GOF LEC, GOF Debug and GOF
Al

GOF ECO is the flagship tool within the GOF platform, offering state-of-the-art technology and methodologies for functional
netlist ECO. Whether you need to identify non-equivalent modules, fix non-equivalent points, or streamline the
Implementation netlist, GOF ECO has you covered.

GOF Formal is another critical component of the GOF platform, providing a formal method for calculating fault coverage in an IC
design in functional safety.

GOF LEC is the logic equivalence checker tool within the GOF platform, enabling users to easily verify the equivalence of their
designs and ensure that they function as intended.

GOF Debug is the netlist debug tool integrated with incremental schematic, providing a fast and efficient way to identify and
resolve errors in your netlist.

GOF Al is an agentic Al Platform that accelerates chip design. It generates Verilog RTL code directly from specifications, using a

scoring system to help you select the most accurate version. The platform also features natural language support for netlist
ECO and includes an automatic debugging method to quickly identify the root cause of non-equivalent points.

1.1 Download and Install GOF

GOF release package can be found in

https://nandigits.co/download.php

Please complete the form to request an evaluation license before downloading the application.

The tool supports Linux 64bits OS. Download the release package and unzip to a directory. Set
'the_64bit_install_path/GOF64/bin' in search path.

1.2 License and Setup

Visit https://nandigits.co/supports.php?type=license to request an evaluation license. Or email support@nandigits.co for more
information. Without license, the tool can support netlist size less than 500K bytes. There are two license modes, fixed node
mode and floating node mode.

e Fixed node license: Copy the license file to "the_install_path/GOF64/bin" and restart GOF.
e Floating node license: Please refer to this page to install floating license https://nandigits.co/floating license setup example.htm

2 GOF ECO: Functional ECO Tool
2.1 Netlist ECO Solutions

GOF ECO incorporates the following features:

Automatic functional ECO uses the Reference Netlist to fix the Implementation Netlist

RTL-guided automatic functional ECO produces quicker and more targeted ECO results

RTL patch ECO can speed up the turnaround time by avoiding full-scale and lengthy synthesis processes
Built-in logic equivalence check engine makes the ECO self contained

Parallel processing fully utilizes multiple CPU cores to reduce ECO run time

Standard spare cells in Metal only ECO remaps only spare gates in post-mask ECO

Metal Configurable Gate Array Spare Cells makes larger Metal Only ECO possible

Auto mode ECO mixed with GUI and Script mode ECO optimizes ECO patches to the full extent

ECO retargeting achieves huge netlist ECO in short period of time

DFT friendly maintains test logic untouched to avoid second time ECO in late design stage

GOF ECO utilizes various advanced ECO methodologies, as netlist ECO can vary significantly in terms of size and complexity
across different cases and companies. To provide users with maximum flexibility, GOF offers a range of methodologies to
choose from, allowing them to select one or multiple options based on the specific requirements of the changes involved.

GOF Provides
Complete Functional
Netlist ECO Solutions

- Flow Control
- ECO Operations

Figure 1: Complete Functional ECO Solutions

e Automatic ECO and Manual ECO

e RTL to Netlist and Netlist to Netlist
e Script Mode and GUI Mode

e Metal Only ECO and All Layers ECO

« Automatic mode ECO

The automatic functional ECO is carried out using a GOF ECO script, which requires an Implementation Netlist that is currently
under ECO and a Reference Netlist that is re-synthesized from the modified RTL with the same constraints as the pre-layout
netlist. The 'fix_design' API is utilized to execute a top-down global ECO. GOF leverages its built-in Logic Equivalence Check

© 2025 NanDigits Design Automation All Rights Reserved. Page 11

/download.php
https://nandigits.co/supports.php?type=license
/floating_license_setup_example.htm

GOF User Manual

engine to identify and analyze non-equivalent points in both the top-level module and its sub-modules. Logic patches are
generated to rectify any non-equivalent modules, and the final patches are optimized circuits that minimize the gate count
required to make the Implementation Netlist equivalent to the Reference Netlist. Finally, the 'map_spare_cells' APl is used to
map these patches to spare-type-gates.

o Manual mode ECO

If the ECO changes are limited in scope and size or involve repetitive operations such as adding inverts on a bus, it is more
efficient to use the manual mode ECO. This mode is a better option as it results in fewer final gates being touched compared
to automatic mode ECO. Additionally, both automatic and manual modes can be combined and executed within a single GOF
ECO script.

e Metal Only ECO

When ECO is done in either automatic mode or manual mode, 'map_spare_cells' command is run to convert the newly added
cells to spare gate types cells. Users can control only spare gate type cells being used in manual mode ECO, so that the
converting stage can be bypassed. The flow supports both standard spare cells and gate array spare cells.

o Hierarchical ECO

GOF supports hierarchical ECO by set the ECO scope to the sub-modules. Some Logic Equivalence Check cases can only be
resolved in flatten mode. Since GOF only focuses on the modules or spots that user specifies, it can avoid to get false non-
equivalence in hierarchical netlist.

¢ GUI mode ECO

GUI mode ECO has advantage of fast ramping up. It's good for small size ECOs. The incremental schematic feature is very
helpful for analyzing the netlist before the next step is decided.

« Integrated environment

The ECO modes listed above are integrated into one work environment seamlessly. The mixing of ECO modes can produce
most optimal ECO result. For example, automatic ECO and manual script ECO can be done in one ECO script, so that the
minimum size ECO patch can be achieved.

2.2 Automatic Full-Layers Functional ECO Flow

The Full Layers Functional ECO allows for the addition or removal of gates in a flexible manner. The ECO operations are
performed using a script in Perl syntax, which accesses, modifies, and saves the netlist database using exported APIs. GOF
ECO reads in two netlist files: the Implementation Netlist (which is under ECO) and the Reference Netlist (which is re-
synthesized from modified RTL with the same constraints as the pre-layout netlist). In the ECO script, the 'fix_design' API is
used to fix the top-level module and its sub-modules in global mode. GOF utilizes its built-in Logic Equivalent Check Engine to
identify non-equivalent points and applies optimized minimum size gate patches to fix the non-equivalent modules.

Figure 2 shows that two logic cones are extracted from the Implementation and Reference Netlist for the same comparison
point. Initially, the implementation point does not match the reference point. GOF compares the two points and generates a
patch from the Reference logic cone, which it applies to the Implementation Netlist. After patching, the two points become
equivalent.

/

Logic Conein

Failing
Point

Implemertation
Metlist

1]

/\

Logic Cone in
Reference

Point

Refarence
Metlist

1]

\

Figure 2: Logic Cone Optimization

GOF performs logic cone analysis and optimization for each failing point discovered during top-down logic equivalence checks.
The failing point takes the form of an output port or input pin of a sequential element, such as a flip-flop's D input. The final
patch contains the fewest number of gates required to ensure that the implementation logic cone matches the reference logic
cone.

Figure 3 depicts the flow chart of the process.

IMP IMP REF REF
SVF Netlist Netlist SVF

IMP: Implementation
REF: Reference

SVF: SVF file from DC
synthesis

Note -- SVF file is
optional. It helps key
point mapping when the
design involves multibit
flops or massive name
changes

/ Analyze the Non-Equivalent Modules I

Patches

Al4 2y3 up sa3eD / —

[Apply Patches I

A4

Create Report and Write out I

\ ECO Results
ECO Netlist ECO Scripts l

Figure 3: Automatic functional ECO flow

/

2.2.1 Files and data requirements in automatic functional ECO

e Liberty files with extension ".lib'

e Other Verilog libraries files for modules not covered in '.lib' files

e Implementation SVF and Reference SVF file, required for designs with multibit flops
e Implementation Netlist on which ECO will be done

e Reference Netlist synthesized with the same constraints as the pre-layout netlist

e The top level module name under ECO

2.2.2 Steps to do automatic functional ECO

© 2025 NanDigits Design Automation All Rights Reserved. Page 12

GOF User Manual

Steps for an automatic functional ECO:

e Modify the original RTL
e Synthesize the new RTL to get Reference Netlist or synthesize sub-modules only and re-assemble the top level netlist
e Create GOF ECO script:
o Specify ECO name in 'setup_eco'
o Load Liberty files and Verilog libraries
o Load the Reference Netlist and the Implementation Netlist
o Fix the design by 'fix_design'
o Report ECO status and write out ECO results
e Run the above ECO script by "gof -run eco_script.pl"

2.2.3 Automatic Functional ECO example script

The ECO script employs the exact syntax of a Perl script. It executes exported APIs that interact with the netlist database,
facilitating modifications to the netlist.

The following is the example script for automatic functional ECO:

GOF ECO script, run example.pl

use strict;

setup eco("eco example");# Setup ECO name

read library("tsmc.5nm.1ib");# Read in standard library

SVF files are optional, best to be used when the design involves multibit flops

#read svf ("-ref", "reference.svf.txt"); # Optional, must be loaded before read design, must be in text format
#read svf("-imp", "implementation.svf.txt"); # Optional, must be loaded before read design, must be in text format
read design("-ref", "reference.gv");# Read in Reference Netlist

read design("-imp", "implementation.gv");# Read in Implementation Netlist Which is under ECO

set top("topmod");# Set the top module

Preserve DFT Test Logic

set_ignore output ("scan_out*");

set pin constant ("scan_enable", 0);

set pin constant ("scan mode", 0);

fix design();

save_session("current eco name"); # Save a session for future restoration

report eco(); # ECO report

check design("-eco");# Check if the ECO causes any issue, like floating

write verilog("eco verilog.v");# Write out ECO result in Verilog

run_lec(); # Run GOF LEC to generate Formality help files

write compare points ("compare points.report");

write formality help files("fm dir/formality help"); # formality help files are generated in fm dir folder
fm dir/formality help.config.tcl can be used in Formality script to pass logic equivalence checking
exit; # Exit when the ECO is done, comment it out to go to interactive mode when 'GOF >' appears

=)

2.2.4 Run and debug in automatic functional ECO

The ECO Script can be run by '-run’ option.
gof -run run example.pl

Check Run and debug ECO script section in User Manual for more detail

2.2.5 Synthesize sub-modules only

Performing a complete top-level netlist synthesis can be time-consuming. GOF provides APIs enabling the integration of newly
synthesized sub-modules into the original pre-layout netlist, along with updates to the top-level SVF file. This incremental
approach allows the generation of the large top-level netlist and the top-level SVF file, resulting in significant time and effort
savings. At the RTL level, designers identify modified RTL modules during ECO and synthesize them to create netlist and SVF
files. Some altered RTL modules, particularly sub-parent modules with only sub-module instantiations, may not require
synthesis.

In Figure 4, only two sub-modules, SUB_MOD31 and SUB_MOD32, require re-synthesis in the extensive SOC_TOP design. Their
parent module has only experienced connection changes and remains in netlist format, eliminating the need for synthesis. The
example below illustrates how to process these files and generate a new SOC_TOP level netlist and SVF file.

RTL changes faor the
connections between
SUB_MOD31 and

SUB_MOD32

SOC_TOP

SUB_MOD1 SUB_MOD2 SUB_MOD31 SUB_MOD32
has been has been
| resynthesized resynthesized
v
SUB_MOD10 SUB_MODM SUB_MOD30

Figure 4: Sub-modules to be synthesized
Step 1: Add missing DFT ports

The newly synthesized sub-modules may lack certain ports present in the original netlist. Notably, ports essential for scan in
and scan out are typically added by the DFT tool. Since the DFT process is not applied to the new synthesized sub-modules,
it's necessary to incorporate these ports as dummy ones within the modules to avoid syntax errors.

The procedure for incorporating DFT ports into the newly synthesized modules is as follows:

use strict;
read library("tsmc.lib");
read_design("-ref", "SOC TOP.pre layout.gv");# Read in the original pre layout netlist
read _design("-imp", "SUB MOD31l.new syn.gv");# Read in new synthesized netlist
set_tree("ref");
set top("SUB MOD31 1"); # The old pre-layout netlist may have this module with prefix or suffix added in uniquify
my @ref port ins = get ports("-input");
my @ref port outs = get ports("-output");
set_tree("imp");
set_top ("SUB MOD31");
my @imp port ins = get ports("-input");
my @imp port outs = get ports("-output");
my $cnt = 0;
foreach my $port (Q@ref port ins){
if (!grep(Sport eq $, @imp port ins)){ # The input port is not in the new synthesized module
new port ($port, "-input");
gprint ("$cnt: Warning input $port is not in the

}

synthesized sub-module\n"); S$Scnt++;

}
foreach my S$port (@ref port outs) {
if (!grep(Sport eq $, @imp port outs)){ # The output port is not in the new synthesized module
newﬁport($port, "-output") ;
gprint ("$cnt: Warning output $port is not in the new synthesized sub-module\n"); S$cnt++;
}
}
write verilog ("SUB MOD31.dft ports added.gv'");
exit;

© 2025 NanDigits Design Automation All Rights Reserved. Page 13

gof_manual.php#-run-and-debug-gof-script

GOF User Manual

The identical process should be executed on SUB_MOD32 to include the necessary DFT-related ports.
Step 2: Replace sub-modules netlist and SVF

During this step, the DFT ports added netlist and SVF files of the synthesized sub-modules are read to substitute the original
pre-layout netlist and SVF files.

The procedure for replacing netlist and SVF:

read library ("tsr
read svf ("-imp",
read design("-imp", "
read_sub module_ svf ("SU
read_sub module_ svf ("SUB
read_sub _module netlist(

read_sub_module netlist ("SUB
read_sub_module netlist ("SUB

Need sub only option

replace_sub module netlist ("¢
replace_sub module svf ("SOC TOP.

Replace netlist should be run first
Then replace SVF

After the generation of both the top-level netlist and SVF files, they can be incorporated into the complete top-level automatic
ECO process.

2.2.6 SVF files support

When working with designs that include multibit flops or significant name changes, SVF files can be a valuable tool for
facilitating key point mapping. Although multibit flops are used to reduce silicon area and power consumption, the different
combinations of single bit flop instances in each multibit flop instance can create challenges for key point mapping, especially
when combined with name changes. Additionally, backend tools may split or merge multibit flops, further complicating the
process. To avoid these challenges and ensure accurate key point mapping, it's highly recommended to load SVF files when
working with multibit flops. For more information on this topic, please refer to the Multibit Flops in ECO section.

2.2.7 Multibit flops in ECO

Multibit flops can pose a challenge in logic equivalence check and ECO due to the different naming conventions used by
various synthesis tools. For example, as depicted in Figure 5, a four-bit multibit flop has a different naming style in Cadence
Genus compared to Synopsys Design Compiler after name changing. Additionally, backend tools may split some multibit flops
into single bit flops to address timing issues. These factors make key point mapping a complex task.

In logic equivalence check, multibit flops need to be mapped to single flops. However, the mapping of single flops to multibit
flops from the Reference Netlist may differ from the Implementation Netlist. For instance, in Figure 5, the Implementation
Netlist has a four-bit multibit flop instance named 'a_reg_0_2_4_', whereas the Reference Netlist after Synthesis may have
two-bit multibit flops named 'a_reg_0_1_'and 'a_reg_2_4_'. Depending solely on naming conventions may not lead to the
correct multibit to single bit mapping. Although LEC and ECO tools can handle some limited multibit to single bit mapping using
comprehensive algorithms, there is no guarantee of complete successful mapping.

Multibit Flop Instance Naming:
Genus:
CDN_MBIT a reg 0 MB areg 1 MB areg 2 MB areg 4

Design Compiler:

a_reg 0 2 4
—1{ D1 Q1 —
— D3 Q3 —
—{ D4 Q4 | —
— 7 CK
RN

Figure 5: Multibit flop naming in synthesis tools

GOF provides support for accurate and reliable key point mapping through the use of text mode SVF files from Design
Compiler. These SVF files are encrypted by default, but can be converted to text mode when using Formality to read the
encrypted file. Additionally, GOF can convert backend multibit flop split/merge information into an SVF file. By reading both the
synthesis SVF and the converted SVF file, GOF is able to completely resolve the mapping of multibit flops to single bit flops.

For instance, Innovus generates a multi_bit_pin_mapping file to store split and merge information. This file can be converted
to an SVF text file using a GOF script.

Here is an example script for converting an Innovus multi_bit_pin_mapping file:

read library("libdir/art.lib");

set multibit blasting(0); # Disable multibit blasting
read design('-imp', "imp net.v");

set_top ("the top");

open (FIN, "./multi bit pin mapping");
my $mbit split = {};
my Smbit merge = {};
while (KFIN>) {
my ($from, $to) = (m/ (\S+)\s+(\S+)/);
$from =~ s/\/\wt$//; # remove the pin
$to =~ s/\/\wtS//;
my ($module, $to_inst) = get resolved($to);

my ($from inst) = (Sfrom =~ m/(["\/1+)$/);
my $libcell = get ref ($to);

gprint ("get ref of S$to as $libcell\n");

my $is ff = is seq($libcell, "-ff");

if (Sis_ ff){

if (is_seq($libcell, "-bank")==0) {
if (lexists $mbit split->{Smodule}{S$from inst}) {
Smbit split->{$module}{$from inst} = [];
}
if (grep($_ eq Sto_inst, @{$mbit s

_split->{$module} {$from inst}})==0) {
gprint ("Multibit split in $module S$from inst to $\37Lrg\\r");
push @{$mbit_split->{Smodule}{$from inst}}, S$to_inst;

}

telse{
Bank
if (lexists $mbit merge->{S$module}{Sto inst}) {
Smbit merge->{$module}{$to inst} = [];
}
if (grep($_ eq $from inst, @{$mbit merge->{Smodule}{S$to inst}})==0) {
gprint ("Multibit merge in $module $from inst to ptoiirgt\r”);

push @{$mbit7merge—>{$module}{$tofinst}?} $from inst;
}
}
}
}
close (FIN) ;

© 2025 NanDigits Design Automation All Rights Reserved.

Page 14

gof_manual.php#-multibit-flops-in-eco

GOF User Manual

my $svf = "";
foreach my $module (keys %$Smbit merge) {
Ssvf .= "guide multibit -de gn Smodule -type { svfMultibitTypeBank } \\\n";
$svE .= " —groups { \\\n";
foreach my $mbit inst (keys %{$mbit merge->{Smodule}}) {
my $i st = "";

my $cnt = 0;
foreach my $s bit (@{$mbit merge->{$module}{$mbit inst}}) {

$i st .= " $s bit 1";
Scnt++;
}
$i_ st .= " Smbit inst Scnt";
Ssvf .= "\t{ $i st } \\\n";
}
Ssvf .= " \n";

}
foreach my $module (keys %S$mbit split) {

$svf .= "guide multibit -design $module -type { sviMultibitTypeSplit } \\\n";
$svf .= " -groups { \\\n";
foreach my $mbit inst (keys %${$mbit_ split->{Smodule}}) {

my $i st = "";

my S$cnt = 0;
foreach my $s bit (@{S$mbit split->{$module}{$mbit inst}}) {

Si_st .= " S$s bit 1";
Scnt++;
}
$i st = " Smbit i Scnt $i st";
Ssvf .= "\t{ $i s \\\n";
}
$svf .= " \n";
}
open (FOUT, ">backend multibit.svf.txt");

print FOUT $svf;
close (FOUT) ;

Two SVF files for Implementation are loaded in the implementation read_svf:

read svf ("-ref", "ref rf.txt™);

read svf("-imp", "implementation. .txt", "backend multibit.svf.txt"); # Two SVF files are loaded
read design("-ref", 're ") ;# Read in Reference Netlist

read design("-imp", "imp on.gv");# Read in Implementation Netlist Which is under ECO

2.2.8 ECO Retargeting

The synthesis of a large SOC design is known for its time-intensive nature, often taking several days to complete. In cases
where a functional ECO is necessary, particularly concerning a specific sub-module, the design team opts to confine the ECO to
that particular sub-module instead of initiating synthesis for the entire design. Following this, the ECO results for the sub-
module are retargeted onto the full top-level netlist. This strategy significantly accelerates the turnaround time and ensures
the project schedule remains on track.

However, the team must factor in the boundary optimization of the sub-modules during backend processing. A given sub-
module may have undergone unique transformations, resulting in the creation of multiple distinct physical modules with
diverse backend optimizations. Illustrated in Figure 6, an instance of SUB_MOD_A may exemplify a backend modification, such
as a port inversion.

Consequently, the automatic ECO process must be designed to account for these variations in backend processing, ensuring a
comprehensive and accurate adaptation to the specific characteristics of each sub-module.

SOC_TOP
SUB_MOD_A has
one instance SUB_MOD1 SUB_MOD2 SUB_MOD3
boundary optimized

N

S
SUB_MOD10

Figure 6: Instances of one sub-module have different boundary optimization

SUB_MOD31

The boundary optimization challenge in GOF is addressed by incorporating the original pre-layout netlist. This is possible
because the pre-layout netlist should mirror the state of the netlist before any ECO is implemented, with the boundary
remaining unchanged prior to the placement and routing phase.

To extract the boundary optimization of sub-modules during ECO, a comparison is made between the pre-layout netlist and
the netlist under ECO. As the automatic ECO is applied to individual sub-modules, the relevant boundary optimization
information is retroactively annotated. This ensures the precision of the ECO and establishes equivalence when comparing
top-level designs.

The loading of the pre-layout netlist is facilitated by using the "-ori_syn" option in the "read_design" command.
ECO retargeting script:

read design('-ref', "new sub mode a.gv"); # New synthesized sub-module-A
read _design('-imp', "post layout.gv"); # Full post layout netlist

read design('-ori syn', "pre layout.gv"); # Full prelayout, equal to post_ layout.gv
Apply ECO to the first instance

set top ref ("SUB MOD A"); # Must set REF scope

set top("SUB MOD A 0"); # Uniquified name for the first instance
fix_design;

Apply ECO to the second instance

set top ref ("SUB MOD A"); # Must set REF scope

set_top(”SZEiMO 1"); # Uniquified name for the second instance

fix design;

set_top ("SOC TOP");

report eco();

write verilog("post layout.eco.gv"); # Full post layout netlist after ECO

This entire retargeting procedure is notably more time-efficient compared to performing a full netlist ECO. With the boundary
information being meticulously addressed, the resulting ECO is highly accurate.

2.2.9 DFT Constraints

To prevent false non-equivalence in LEC and ECO, constraints must be placed on the DFT logic. In the traditional DFT flow, the
DFT logic is typically incorporated into the RTL design, which appears in both the Reference Netlist and the Implementation
Netlist. In contrast, the modern DFT flow, which supports IEEE1687 and IEEE1500 standards, inserts the DFT logic into the
Implementation Netlist using a DFT tool like Mentor Tessent. To ensure that the Implementation Netlist, which contains DFT
logic inserted by the DFT tool, matches the Reference Netlist, which lacks DFT logic, a Logic Equivalence Check must be
performed. To prevent redundant or false ECO fixes, the DFT logic must be correctly constrained in the automatic functional
ECO process.

© 2025 NanDigits Design Automation All Rights Reserved. Page 15

GOF User Manual

In the traditional DFT flow, as illustrated in the left side of Figure 7, constraints are placed on the ports. For instance, DFT
control signals such as TEST_EN are set to zero, while the normal functional ports are left unconstrained.

Set DFT Constraints

set pin constant ("TEST EN", 0);
set pin constant (' ode", 0);
set ignore output (": ut*") ;

TEST_EN
TEST_EN >
N I —
TDR_SEL1
Design DAT_IN
DAT_IN P Design
> — | Under
Test Tl
a"—;"“t TDR_SEL2
IEEE1687 IEEE1500
TDR Registers
No DFT Logic Modern DFT Flow Has DFT Logic Inserted

Figure 7: DFT Constraints in Automatic Functional ECO

In the modern DFT flow, these inserted DFT logic by the DFT tool as shown in the right side of Figure 7 should be constrained
to be in inactive state. The control signals driven by TDR registers should be constrained to zeros.

GOF provides several APIs to constrain the DFT logic, set_ignore_output, set_pin_constant and set_net_constant. The API
set_net_constant can be used to constrain the TDR registers signals. Since TDR registers are not ports, so they have be
treated as nets.

Set DFT Constraints for the modern DFT flow
set_pin_constant ("TEST EN", 0);
set_pin_constant ("scan mode", 0);

set ignore output ("scan out*");

set_net constant ("T 0, "-imp"); # TDR register net only exists in Implementation Netlist
set_net constant ("T 0, "f‘ﬂp”)-
set_net constant ("all , 0, "-imp");

For memories that have pins directly controlled by TDRs
set_ignore pin("TSMC MEM 256X29/TCEN*");

The full script with constraints on the traditional DFT flow is shown below:

GOF ECO script, run_example exclude test logic.pl

The SOC_TOP design should have scan insertion test logic excluded in ECO.

The scan out bus pin has naming of scan out[199:0] and API set ignore output can be used to exclude LEC check on
scan _out in ECO.

And TEST EN and scan mode are two scan set up signals which can be forced to zeros by API set pin constant.

use strict;

undo_eco;# Discard previous ECO operations

setup eco("e xample") ;# Setup ECO name

read library("ts ib");# Read in standard library

read svf ("-ref", "r f.txt"); # Optional, must be loaded before read design, must be in text format

read svf ("-imp", "imple f.txt"); # Optional, must be loaded before read design, must be in text format
read design("-ref", "ref) ;# Read in Reference Netlist

read design("-imp", "I t on.gv");# Read in Implementation Netlist Which is under ECO

set top("SOC TOP"); # Set the top to the most top module SOC TOP

set ignore output ("scan out*");

set pin constant ("TES 7FH” 0);

set pin constant ("scan mode', 0);

fix design;

save session("current eco name"); # Save a session for future restoration

report eco(); # ECO report

check design("- e # Check if the ECO causes any issue, like floating

write verilog (" v");# Write out ECO result in Verilog

exit;# Exit when the ECO is done, comment it out to go to interactive mode when 'GOF >' appears

The full script with constraints on the modern DFT flow is shown below:

GOF ECO script, dft constraints on inserted test logic.pl

set net constant is used to constrain TDR register nets to zeros
use strict;

undo_eco; # Discard previous ECO operations

setup eco("eco example");# Setup ECO name

read library("tsmc. ,lb") # Read in standard library

read_svf ("-ref", "r rence.svf.txt"); # Optional, must be loaded before read design, must be in text format

read _svf ("-imp", "implementation.svf.txt"); # Optional, must be loaded before read design, must be in text format
read _design("-ref", ' /") ; # Read in Reference Netlis

read _design("-imp", "implementation.gv");# Read in Implementatlon Netlist Which is under ECO
set_top ("SOC TOP"); # Set the top to the most top module SOC TOP

set_ignore output ("scan out*");

set_pin_constant ("TEST EN", 0);

set pin constant ("scan mode", 0);
set net constant ("TDR SELO", 0, "-imp"); # TDR register net only exists in Implementation Netlist
set_net constant ("TDE

EL1", 0, "-imp");
set_net constant ("all st", 0, "-imp");
fix_design;
save_session("current eco name"); # Save a session for future restoration
report eco(); # ECO report
check design("-eco");# Check if the ECO causes any issue, like floating
write verilog ("e verilog.v");# Write out ECO result in Verilog
exit;# Exit when the ECO is done, comment it out to go to interactive mode when 'GOF >' appears

2.2.10 DFT Design Rule Checker

It's common for DFT logic to be broken during functional ECO processes, which involve modifying a design for functional
reasons after it has already been verified. Since DFT control signals are disabled during functional ECO, the ECO tool is not
aware that DFT logic has been modified and cannot verify its functionality. When the modified netlist is ready to be tested
using DFT tool, it can take a long time to identify issues. GOF provides a fast DFT Design Rule Checker that can quickly identify
issues with DFT logic. A fundamental design rule for DFT is to ensure that the scan chain is complete, meaning that it can be
used to capture and output test patterns during testing. Additionally, clock and reset signals should be controllable during test
mode to enable proper test pattern application.

© 2025 NanDigits Design Automation All Rights Reserved. Page 16

GOF User Manual

Previous Flop Next Flop
Sl Q Si Q

DFT design rule requires
clock to flops being
controllable during
TEST_MODE high that only
TEST_CLOCK has active
paths to all flops

QB QB
CK CK

SE SE

TEST_CLOCK

TEST_MODE

Figure 8: DFT Design Rule Checker

The script to do DFT Design Rule Check:

set log file
read library
read design('-imp',
set_top ("DFT TOP");
set pin constant ("
set pin constant ("
set pin constant ("
create clock("o
create clock(
create reset(
set top ("DES

Set log file name

(' #
(' # Read in liberty file
#
#

dft
'art.

Read in the design with DFT implemented
Set the top module name
1); # Set scan shift pin to 1
1); # Set TDR all test register Q to 1
1); # Set TDR test mode register Q to 1
); # Set clock on OCC drivers, maybe multiple
10); # Set clock on OCC drivers, maybe multiple
Set reset pin

pin_si/pin so is internal pins of DFT_TOP
set scan pairs ('t O]"); # Add scan chain pair 0
set scan pairs("pin si - so[1]"); # Add scan chain pair 1
More scan chain can be added. These codes can be handled by a for loop command
set top ("DFT TOP");

my Serr = dft_drc;
if (Serr) {
gprint ("DFT DRC found S$err e

}
The Design Rule Checker can catch these issues by error codes:

ERROR_CLOSE_LOOP: A flop driving its own SI by Q pin

ERROR_CLOCK: A flop having clock that cannot be controllable in DFT mode
ERROR_CLOCK_UNDEFINED: A flop driven by a clock not defined as DFT clock
ERROR_MULTI_PATHS: Scan chain having multiple paths

ERROR_SE_NOT_ASSERT: A flop having shift enable pin not asserted
ERROR_RESET_GLITCH: A flop having reset pin with multiple active paths which may cause glitch
ERROR_RESET: A flop having reset pin not controllable in DFT mode

ERROR_SET_GLITCH: A flop having set pin with multiple active paths which may cause glitch
ERROR_SET: A flop having set pin not controllable in DFT mode

ERROR_END_CONST: A scan chain ending with constant

ERROR_END_AT_INST: A scan chain ending with a non-flop, nor EDT logic

For instance, DFT DRC catches ERROR_MULTI_PATHS error in a functional ECO when an NAND gate is inserted between back-
to-back flops.

The scan chain is good for back to back flops before ECO

Previous Flop Next Flop
Si Q D Q

D

CK CK

SE

The scan chain is broken after ECO, the two flops are not back to back any more

A

Z
Previous Flop B Next Flop
Sl Q [

CK CK

SE

Figure 9: Broken scan chain in functional ECO

There are two solutions to fix the error. The first solution involves changing the drain flop, FLOP_B, to a scan type flop with
scan_in and scan_enable pins.

© 2025 NanDigits Design Automation All Rights Reserved. Page 17

GOF User Manual

Solution 1: Change the drain flop FLOP_B to scan type flop

FLOP_A FLOP_ B

— NAND —
— S Q A Sl QF—————
Z
D B D
CK CK

SE SE
AL |

Figure 10: Solution 1 to change the drain flop scan type

The second solution involves inserting a MUX before the D input of FLOP_B. The selection signal of the MUX is controlled by the
scan_enable signal to select the output of the previous flop, FLOP_A, when scan_enable is asserted.

Solution 2: Insert a MUX into the drain flop FLOP_B D input

A
FLOP_A 7 MUX FLOP_B
B
— sl Q INO D Q
NAND z
S IN1
/ c
CK K
SE
SCAN_SHIFT i

Figure 11: Solution 2 to insert a MUX to fix the scan chain

Both solutions can be implemented using GOF in either GUI mode ECO or script mode ECO. After the necessary fixes have
been made, the DFT DRC will be free of errors.

For more information on GUI mode ECO, please refer to this page.
The commands to fix the logic in script mode:

#Solution 1

change gate ("FLOP B", "SDFFHQOX1", ".SI(FLOP A/Q),.SE(FLOP A/SE)");:
#Solution 2
change pin ("FLOP B/D", "MX "u_df nux", "-,FLOP A/Q,FLOP A/SE")

2.2.11 No Exact Pin Match

Physical Synthesis is more and more popular in logic synthesis. Physical Synthesis tool, Design Compiler Topographical(DCT) or
Design Compiler Graphical(DCG) for example, may add hierarchical pins that are not in RTL code and it may cause mapping
issue when Implementation Netlist is comparing with Reference Netlist in ECO.

For example, DCT may add 'INQ', 'IN1', 'IN2', 'IN2_BAR' ... to hierarchical modules. The new added pins are not necessarily
matching to each other in Implementation Netlist and Reference Netlist. That is, INO in module A in Reference Netlist maybe a
different signal from INO in module A in Implementation Netlist.

Reference Netlist Implementation Netlist

INO...IN3 generated in DCT are not the same nets in two netlists

L | S T

MO 1M1 IN2Z_BAR IN3 IND INT INZ_BAR N3

Madule A in Reference Module A in Implementation

Figure 12: No Exact Pin Match

These pins are randomly named in each run. They won't affect logic equivalence check, but they need to be excluded in pin matching in ECO. Otherwise, the ECO tool would
insert redundant logic or wrong logic.

API set_noexact_pin_match can be used to resolve the mapping issue between Implementation Netlist and Reference Netlist.

By adding the port naming regular expression in the API argument, set_noexact_pin_match("\bIN\d+(_BAR)?\b"), these ports
will be remapped.

Note: This API should be run before reading designs.

GOF ECO script, run example noexact pin match.pl

use strict;

undo_eco;# Discard previous ECO operations

setup_eco ("ecc ble") ; # Setup ECO name

read library("ar ib");# Read in standard library

set noexact pin match ('\bIN\d+(BAR)?\b'); # The argument is in REGEX format to detect INO/INO BAR/INI...
Note: set noexact pin match API should be run before reading designs!

read svf("-ref", "reference.svf.txt"); # Optional, must be loaded before read design, must be in text format
read svf("-imp", "implementati svf.txt"); # Optional, must be loaded before read design, must be in text format
read design("-ref", "refe ");# Read in Reference Netlist

read design("-imp", "implementation.gv");# Read in Implementation Netlist Which is under ECO

set top("SOC TOP"); # Set the top to the most top module SOC TOP
set ignore output ("scan out*");

set pin constant (" le"
set pin constant ("

© 2025 NanDigits Design Automation All Rights Reserved. Page 18

gvt_netlist_debug.php

GOF User Manual

fix design;

save session("current eco name"); # Save a session for future restoration

report eco(); # ECO report

check design("-eco");# Check if the ECO causes any issue, like floating

write verilog (" v");# Write out ECO result in Verilog

exit;# Exit when the ECO is done, comment it out to go to interactive mode when 'GOF >' appears

veriloc

2.2.12 Flip-flop Phase Inverted

During the pre-mask design stage, transitioning a flip-flop from resettable to settable type or vice versa is a relatively
straightforward task. However, making such changes during the post-mask design stage can be challenging because it can be
difficult to locate an available spare flip-flop to replace the original one. To overcome this challenge, a common approach is to
add inverters to the input and output pins of the flip-flop while maintaining its original set/reset type.

Aside from resolving the issue of locating spare flip-flops, adding inverters to the flip-flop input and output pins can also
address timing or power-related concerns. In some cases, this technique can help with timing closure or reduce power
consumption.

It is essential to note, however, that implementing such changes can lead to challenges during logic equivalence checking.
Incorrectly addressing these changes can result in false non-equivalent points, leading to design uncertainty. As such,
appropriate measures should be taken to ensure that the changes made to the flip-flop type do not affect logic equivalence
checking.

A
z D Q A
B Z
B
CK QB
Normal Phase RN

Inverted Phase

Figure 13: Flip-flop Phase Inverted

To address this issue, the GOF platform provides an API command to configure these cases. The set_mapping_method('-
phase') API is utilized to handle such situations and ensure that the changes made to the flop type do not cause false non-
equivalent result.

GOF ECO script, run example ff phase inverted.pl

use strict;

undo_eco;# Discard previous ECO operations

setup_eco ("e é e");# Setup ECO name

read library (' ib") ;# Read in standard library

read svf ("-ref", "re 7£.txt"); # Optional, must be loaded before read design, must be in text format
read svf ("-imp", "i vi.txt"); # Optional, must be loaded before read design, must be in text format
read design("-ref", /") ; # Read in Reference Netlist

read desi "-imp", "implementation.gv");# Read in Implementation Netlist Which is under ECO

set top (" TOP"); # Set the top to the most top module SOC TOP
set mapping method('-phase'); # Check flop phase during LEC

set ignore output ("s
set pin constant ("
set pin constant ("sc

fix design;

save session("current eco name"); # Save a session for future restoration

report eco(); # ECO report

check design("-eco");# Check if the ECO causes any issue, like floating

write verilog (" verilog.v");# Write out ECO result in Verilog

exit;# Exit when the ECO done, comment it out to go to interactive mode when 'GOF >' appears

2.2.13 Tie High Tie Low nets

By default, GOF uses 1'b0 for tie low net and 1'b1 for tie high net. Some designs may prefer tie cell over 1'b0/1'b1. API
set_tiehi_net and set_tielo_net can be used to control which tie format is used. To overwrite the default 1'b0/1'b1, simply set
empty argument to the APIs.

Set empty argument to set tiehi net/set tielow net to use Tie Cells
set _tiehi net(""); # Tie High cell will be used instead of 1'bl
set_tielo net(""); # Tie Low cell will be used instead of 1'b0

2.2.14 Stitch new flops into scan chain

To prevent any loss of DFT coverage, it is recommended to integrate new flops added in an ECO into the existing scan chains.
Industrial data suggests that in a design with 100K flops, 100 newly added non-scan flops can lead to a DFT coverage loss of
over 0.1%. Such loss of DFT coverage is unacceptable for high-reliability chips, such as those used in automobiles. Therefore, if
there are any new flops introduced in a functional ECO, it is necessary to redo the scan chain to incorporate the new flops.

© 2025 NanDigits Design Automation All Rights Reserved. Page 19

GOF User Manual

=l Q =1 Q
D D
QB QB
CK CK
SE SE
MNew flop MNew flop
GOF slitches new flops into scan chain

sl

QB QB QB QB
CHK CK CK CK

SE

Figure 14: Stitch scan chain

There are multiple methods available in GOF to insert new flops into scan chains. One option is to utilize the
'stitch_scan_chain' API, which automatically integrates the new flops into the scan chains. Alternatively, there are several
netlist processing APIs that can be used to manually insert the new flops into the scan chains.

Automatic mode to insert flops into a scan chain in the local modules

An automatic method can be used to integrate flops into a scan chain within local modules. In the following example script,
suppose the 'fix_design' command adds eight new flops named 'state_new_reg_0'to 'state_new_reg_7'. To integrate these
flops into the scan chain within the local module:

API stitch scan chain without any argument to insert new flops in the local modules
stitch scan chain();

Automatic mode to insert flops before one flop

GOF offers an automatic method to insert new flops before a specified flop instance. Users can identify the instance name of
one flop, and GOF will insert all new flops into the scan chain before that instance.

For instance, let's say it is required to integrate all the new flops into the scan chain prior to the instance named
'u_pixel_ctrl/pulse_reg":

API stitch scan chain with -to option
stitch scan chain('-to', 'u pixel ctrl/pulse reg');

Manual mode to connect up all new flops
The scan chain can be re-connected up manually by ECO APIs. And new scan in/out ports are created.

GOF ECO script, run manual stitch scan chain example.pl

use strict;

undo_eco; # Discard previous ECO operations

setup eco("eco manual stitch scan chain example");# Setup ECO name
read library("art.5nm.1ib");# Read in standard library

read_svf ("-ref", "reference.svf.txt"); # Optional, must be loaded before read design, must be in text format
read _svf ("-imp", "implementation.svf.txt"); # Optional, must be loaded before read design, must be in text format
read design("-ref", "reference.gv");# Read in Reference Netlist

read design("-imp", "implementation.gv");# Read in Implementation Netlist Which is under ECO
set top("topmod");# Set the top module
set_ignore output ("scan_out*");
set pin constant ("scan enable", 0);
set pin constant ("scan mode", 0);
fix_design;
save_session("current eco name"); # Save a session for future restoration
set_error out(0); # Don't exit if finds error
my @flops = get cells("-hier", "-nonscan"); # Find all new flops that are not in scan chain yet
@flops can be defined by reading a list file
if (scalar (Rflops)){ # If there are new flops, start the work
new_port ("sol", "-output"); # New a scan out port sol
new_port ("sil", "-input"); # New a scan in port sil
my S$cnt = 0;
my Snow_si;
foreach my $flop (Qflops) {
Scnt++;
if (is_scan_flop ($flop)==0) {
my $flop name = get ref ($flop);
my S$scanflop = get scan flop($flop name); # If the flop is not scan type, change to scan type flop
change gate ($flop, $scanflop);
}
if ($cnt==1) {
change port("sol", "$flop/Q"); # The first flop drives the new scan out port
telse(
change pin($now si, "Sflop/Q");
}
$now_si = "$flop/S
change pin("$flop/SE", "te"); # All scan enable pin is connected to scan enable signal

}

change pin($now si, "sil"); # The last flop has the new scan in port driving SI pin
}
write verilog("eco verilog.v");# Write out ECO result in Verilog
exit;

2.2.15 Add a new module

The module mentioned in the section above can have hierarchy kept instead of flatten, and being written into ECO netlist as
whole. This flow needs the module and its sub-modules written out in a separate verilog file, then uses read_library to load
the file with '-vmacro' option. GOF treats the module as a leaf cell.

An example for adding a new module:

GOF ECO script, run new module example.pl

use strict;

undo_eco;# Discard previous ECO operations

setup eco("eco hier example");# Setup ECO name

read library("tsmc.lib");# Read in standard library

read library("-vmicro", "syn macro.v"); # The syn macro module is added into the netlist

read_svf ("-ref", "reference.svi.txt"); # Optional, must be loaded before read design, must be in text format
read_svf ("-imp", "implementation.svf.txt"); # Optional, must be loaded before read design, must be in text format
read design("-ref", "reference.gv");# Read in the Reference Netlist

Read in the implementation netlist which is under ECO
read _design("-imp", "implementation.gv");

set top('top');# Set the top module

set_ignore output ("scan out*");

set _pin constant (' 1 enable", 0);

set pin constant ("scan mode", 0);

fix design;

© 2025 NanDigits Design Automation All Rights Reserved. Page 20

GOF User Manual

save session("current eco name"); # Save a session for future restoration
report eco();# ECO report

check design("- ") ;# Check if the ECO causes any issue, like floating
write verilog("eco verilog.v");# Write out ECO result in Verilog

The content in file syn_macro.v is written into the ECO file eco_verilo.v as a whole. The corresponding instance is created as
well with ports connected correctly according to Reference Netlist.

2.2.16 Note in RTL modification and re-synthesis

When modifying RTL and do re-synthesis, care should be taken to maintain the database as much alike Implementation Netlist
as possible.

2.2.16.1 Keep sequential signal name

A common problem in modifying RTL is having sequential signal name changed, which appears in Reference Netlist as a
different flop instance. For example

always @(posedge clk) abc <= abc next;
It creates a flop instance 'abc_reg' in synthesis. If the ECO in RTL change this to
always @(posedge clk) abc new <= abc next;

After synthesis, a new flop instance 'abc_new_reg'is created. GOF may fail to find that 'abc_new_reg' being able to merge
with 'abc_reg’', due to other non-equivalent points present, which brings a redundant fix in the new register creation.

So it is highly recommended to keep the sequential signal names in re-synthesis.
2.2.16.2 Use the same synthesis constraints
When do re-synthesis, the same constraints should be used as what has been used in Implementation Netlist synthesis. If

any hierarchy is not present in Implementation Netlist, it's better to flatten the module in synthesis to maintain the same
hierarchies.

2.2.17 Debug non-equivalence in large ECO

It happens that an ECO doesn't pass logic equivalence checker, especially for a large ECO. GOF can run individual logic
equivalence checking for flop pairs, output port pairs or any two nets. Check annotating to schematic for more detail.

2.2.18 Check design after ECO

It is highly recommended to run 'check_design' after ECO, to speed up, users can specify '-eco' option,
check design('-eco')

It can detect if there is any floating or multiple drivers after ECO.
2.2.19 Formality help files generation

GOF LEC logic equivalence checking can be performed on any two netlists or on the results after GOF ECO run. Subsequently,
Formality help files can be generated for use in Formality, significantly enhancing the success rate of the Formality tool.

Formality help files generation:

read library("t
read design("-r
read design ("-imp
set top ("CHIP TOP");
run lec(); # Run GOF LEC

write compare points ("compare
write formality help files("fr

e.v"); # Reference netlist
st.v"); # ECOed netlist

ality help"); # formality help files are generated in fm dir folder

In the above example, the assistance configuration file "fm_dir/formality_help.config.tcl" contains a compilation of
set_user_match, rewire_connection, and set_constant commands designed to aid Formality in successfully achieving logic
equivalence checking.

Integrate the file into Formality script:

Formality netlist vs netlist script
read db -tech tsmc.db

read verilog -r reference.v

read verilog -i eco netlist.v

#Setup constraint

#Read in the help config file

source fm dir/formality help.config.tcl
match

verify

2.2.20 RTL Guided ECO Flow

RTL-guided ECO employs two approaches: utilizing the built-in RTL logic equivalence checking engine of GOF or incorporating
results from third-party LEC tools to pinpoint areas needing ECO adjustments. The advantage of the internal RTL LEC is its
speed and efficiency. However, a drawback arises when hierarchies mismatch with synthesized netlists, particularly in designs
with extensive SystemVerilog statements. To address this, third-party RTL LEC tool results can be utilized to resolve hierarchy
inconsistencies. For example, GOF ECO can process a list file of non-equivalent results from tools like Synopsys Formality,
allowing it to concentrate ECO efforts solely on identified areas.

2.2.21 Internal RTL to RTL Guidance

The RTL Guided ECO Flow is an additional step in the netlist ECO process, which involves comparing RTL designs to identify
any discrepancies. Unlike Gate to Gate comparison, this method is faster and more targeted. The ECO process can be slowed
down by the insertion of DFT logic and boundary optimization, making gate-to-gate comparison more complicated. Additionally,
the use of RTL comparison can prevent the generation of redundant ECO fixes during patch generation.

Figure 15 illustrates how RTL to RTL comparison runs parallel to the key-point mapping of two gate-level netlists. If the non-

equivalent points identified by RTL comparison have been integrated into the ECO flow successfully, gate-to-gate comparison
can be bypassed.

© 2025 NanDigits Design Automation All Rights Reserved. Page 21

gof_manual.php#-counterexample-backannotated-to-schematic

GOF User Manual

Implementation Reference
RTL RTL

RTL-to-RTL

Implementation
Netlist ECO Netlist
Keypc_:int Patch
Mapping Generation
Reference Gate-to-Gate
Metlist ECO Script

GOF (Gates On the Fly)

Figure 15: RTL Guided ECO Flow
2.2.21.1 Files and data requirements in RTL guided ECO

e Liberty files with extension ".lib'

e Other Verilog libraries files for modules not covered in ".lib' files

e Implementation SVF and Reference SVF file, required for designs with multibit flops
e Implementation Netlist on which ECO will be done

e Reference Netlist synthesized with the same constraints as the pre-layout netlist

e Implementation RTL which is logically equivalent to the Implementation Netlist

e Reference RTL which is logically equivalent to the Reference Netlist

e The top level module name under ECO

2.2.21.2 Steps to do RTL guided ECO

e Modify the original RTL
e Synthesize the new RTL to get Reference Netlist or synthesize sub-modules only and re-assemble the top level netlist
e Create GOF ECO script:
o Specify ECO name in 'setup_eco'
Load Liberty files and Verilog libraries
Load Reference RTL (the modified RTL) and Implementation RTL (the original RTL)
Check non-equivalent points by 'rtl_compare’
Load the Reference Netlist and the Implementation Netlist
Fix the design by 'fix_design'
o Report ECO status and write out ECO results
e Run the above ECO script by "gof -run eco_script.pl"

0 0 00O

2.2.21.3 RTL guided ECO example script

GOF script has the exact same syntax as Perl script and runs the exported APIs that access the netlist database and modify
the netlist.

The following is the example script for RTL guided ECO:

GOF ECO script, rtl guided.pl
use strict;
setup eco("rtl nple") ; # Setup ECO name
read library (' m.1lib");# Read in standard library
my $rtl2rtl = 1;
if(Srtl2rtl) {

set define ("SYN

set define ("N

set inc dirs("/pxc 00/vl1ib/ IPS/include") ;

read rtl('-ref', "re "refl.sv",

read rtl('-imp', "impO.sv", "impl.sv

set top ("topmod") ;

rtl compare;
}
read svf ("-ref", "r ence.svf.txt"); # Optional, must be loaded before read design, must be in text format
read svf("-imp", "implementatic svE.txt"); # Optional, must be loaded before read design, must be in text format
read design("-ref", "referec v");# Read in Reference Netlist
read design("-imp", "implementation.gv");# Read in Implementation Netlist Which is under ECO

set top ("topmod");# Set the top module

Preserve DFT Test Logic

set ignore output (": out*");

set pin constant (" _enable", 0);

set_pin_constant ("s _mode", 0);

fix_designj;

save_session(”uur:CLf eco name"); # Save a session for future restoration
report eco(); # ECO report

check design("-eco");# Check if the ECO causes any issue, like floating
write verilog("eco x log.v") ;# Write out ECO result in Verilog

exit; # Exit when the ECO is done, comment it out to go to interactive mode when 'GOF >' appears

2.2.21.4 Synthesize Reference RTL to Reference Netlist
If Reference Netlist is not provided, it can be synthesized from Reference RTL by 'synthesize' command.

As shown in Figure 16, Reference RTL is directly synthesized into Reference Netlist and used in the ECO.

© 2025 NanDigits Design Automation All Rights Reserved. Page 22

GOF User Manual

Implementation
RTL

Reference RTL

RTL-to-RTL

ECO Netlist

Implementation Keypoint
Metlist Mapping

Patch
Generation

Gate-to-Gate

ECO Script

GOF (Gates On the Fly)

Figure 16: RTL Guided ECO Flow
The following is the example script for Reference RTL synthesis in RTL guided ECO:

GOF ECO script, rtl guided synthesis.pl

use strict;

setup eco("rtl guided eco example");# Setup ECO name
read library("art.5nm.1ib");# Read in standard library
set define ("SYNTHESIS");

set_define ("NO_SIM");

set_inc dirs("/project/nd900/vlib/include", "/project/nd900/IPS/include");
read_rtl('—v~t', "r@fO.sv”, "refl.sv", "ref2.sv");
read rtl('-imp', "impO.sv", "impl.sv", "imp2.sv");
set_top ("topmod") ;

rtl_compare;

read_svf ("-imp", "implementation.svf.txt"); # Optional, must be loaded before read design, must be in text format
read design("-imp", "implementation.gv");# Read in Implementation Netlist Which is under ECO

set top("topmod");# Set the top module

elaborate; # The command synthesizes the Reference RTL to Reference Netlist

Preserve DFT Test Logic

set_ignore output ("scan out*");

set_pin_constant (" enable", 0);

set_pin_constant ("scan mode", 0);

fix_design;

save_session("current eco name"); # Save a session for future restoration

report eco(); # ECO report

check design ("~);# Check if the ECO causes any issue, like floating

write verilog("eco verilog.v");# Write out ECO result in Verilog

exit; # Exit when the ECO is done, comment it out to go to interactive mode when 'GOF >' appears

2.2.22 Third Party RTL LEC Result Processing

GOF ECO has the capability to ingest a list of ECO points, enabling it to concentrate exclusively on the items specified in the
list. The format of the list file comprises a type designation followed by one or multiple spaces and then the non-equivalence
point.

inst yak zcvg inst/skip pix reg
port te coord[5]

inst yak hah inst/x start pa reg 31
inst yak hah inst/x end pa reg 30
inst yak hah inst/x end pa reg . 29
inst yak hah inst/x end pa reg . 28
inst yak hah inst/x end pa reg 27
inst yak hah inst/x end pa reg . 26
pin yak hah inst/u sync cell/D

The ECO list file is incorporated using the '-list_file' option within the 'read_design' command. It can be generated from a Third
Party LEC non-equivalence result file. For instance, in Synopsys Formality, the command 'report_failing_points >
formality_non_eq.report' generates such a file. In a GOF ECO script, this report file is then read in and converted into the list
file.

Below is an example script demonstrating the conversion of Third Party LEC results and execution of GOF ECO with the
'list_file' option:

use strict;
my $list cont = "";
open (FIN, "formality non eq.report");
while (KFIN>) {
if (m/Ref\s+ (\w+) \s+r:\/\w+\/\w+\/ (.+) /) {
my $fm type = $1;
my S$point = $2;
my Sgof type = "inst'";
if ($fm type =~ m/Pin/) {
Sgof_type = "pin";
}elsif ($fm type =~ m/Port/) {
Sgof_type = "port";
telse{
For instance type
$point =~ s/\[/_/g; # Mostly abc reg[0] has name changed to abc reg 0 in the netlist
$point =~ s/\1/_/g;
}
$list cont .= "Sgof type Spoint\n";
}
}
close (FIN) ;
open (FOUT, o list.txt");
print FOUT $llst cont;
setup_eco("eco list LLL%"), # Setup ECO name
set log file(' t file.log");
read library ("t 5nm.1ib"); # Read in standard library
read_design(”fref”, gv") ;# Read in Reference Netlist
read design("-imp", implrmrw ‘01.gu);# Read in Implementation Netlist Which is under ECO
set_top ("SOC TOP");
set _pin constant ("t
set pin constant ("
set_ignore output ("
fix design("-list f
report eco();
write verilog("eco verilog.v");
exit;

2.3 Standard Cells Automatic Metal Only ECO Flow

 list.txt"); # -list file option to read in the ECO list file with the ECO points

© 2025 NanDigits Design Automation All Rights Reserved. Page 23

GOF User Manual

In Metal Only ECO, the design has completed place and route. Any new gates added should map to spare gates that located
in the design. GOF supports Standard Spare Cells and Metal Configurable Gate Array Spare Cells post-mask metal only ECO.

Implementation
nedlist

DEF File:
{Opticnal)

I It
{ Analyze the non-equivalent modules) 0
b
o]
T a'
A m
t Cm‘igam] t f:::::} } o
- Default =
Intemnal synthesis pu—
=
m
synthesis Y Apply patches
m
External E
. Synthesis Tool | Create report and write
out ECO results
e vy

Y Y
[ECO netlist] [Soripts j

Figure 17: Metal Only ECO

2.3.1 Metal Only Functional ECO: Standard Cells Spare Gates Mapping
2.3.1.1 Introduction

In metal only ECO, the primary objective is to fix the logic without altering the base layers, thus avoiding costly and time-
consuming changes to the silicon. The process involves two main steps: fixing the logic and mapping new gates to spare type
gates. This article focuses on the second step, detailing how spare gates are utilized in metal only ECO and the intricacies
involved in standard cells spare gates mapping.

2.3.1.2 Steps in Metal Only ECO

1. Fix Logic Automatically: The initial step is to automatically correct the logic in the design. This involves identifying the
required changes and determining how these changes impact the existing netlist.

2. Map New Gates to Spare Type Gates: The subsequent step is to map all new gates to the existing spare gates. This
requires a specialized synthesis process to create a new netlist patch that exclusively uses gate types available in the spare
gate list. Special attention is needed for flip-flop (flop) mapping to ensure compatibility.

2.3.1.3 Spare Gates and Combinations

GOF ECO employs an internal synthesis engine to map the patch logic onto spare gates. The spare gates should comprise
specific combinations to ensure optimal area and performance. The primary combinations are:

1. Two ports 'and/or' gates, 'inv' gates and flops, 'mux' is optional.
2. Two ports 'nand/nor' gates, 'inv' gates and flops, 'mux’ is optional.
3. Two ports 'nand/nor/and/or' gates, 'inv' gates and flops, 'mux' is optional.

Among these, the second combination (two ports 'nand/nor' gates, 'inv' gates, and flops) offers the least area, while the third
combination (two ports 'nand/nor/and/or' gates, 'inv' gates, and flops) provides the best performance in metal only ECO
scenarios.

2.3.1.4 Mapping Process

In the mapping process, as illustrated in Figure 18, gates such as MUX and flops are mapped directly onto the spare gates
due to their one-to-one correspondence with the spare gate list. However, more complex cell types like AO32 require
synthesis and mapping onto multiple simpler gates. For example, an AO32 gate might be synthesized and mapped onto three
AND gates and one NOR gate.

_..
Direct mapping
zZ
IN1
CK QB
—
— INO
Z CK
IN1 22
RN
— .
Mapping to
AND/NOR A A
AO32 2 2
B B
—
Synthesize to spare N
gate type and mapping Spare gates on silicon

Figure 18: Standard Cells Spare Gates Mapping

2.3.1.5 Handling Different Flop Types

A common challenge in metal only ECO is when the new flop required has a different set/reset type compared to the available
spare flops. For instance, an ECO may necessitate a set-type flop, but the spare flop list might only provide a reset-type flop.

In such cases, GOF ECO uses a phase invert technique to map the set flop to the available reset spare flop, ensuring
functionality is preserved.

© 2025 NanDigits Design Automation All Rights Reserved. Page 24

GOF User Manual

New set flop in ECO Spare reset flop
D Q D Q-
CK QB CK @B
SN RN

Figure 19: Map new set-type flop to spare reset-type flop in metal only ECO
2.3.1.6 Conclusion

Metal only ECO is a critical process in ensuring the efficient and cost-effective implementation of design changes. By leveraging
spare gates and utilizing specialized synthesis techniques, it is possible to map new logic onto existing spare gates, thereby
avoiding the need for more extensive silicon modifications. Understanding the combinations of spare gates and the mapping
process is essential for optimizing area and performance in metal only ECO.

2.3.2 Spare Gates Synthesis

GOF ECO utilizes a heuristic method that employs constraints to identify the optimal mapping of spare gates. The process
involves setting constraints to restrict the types of NAND/NOR/AND/OR gates to be considered, and then conducting a mapping
exercise to identify the nearest available spare gates. The cost of the mapping is determined by adding the distance between
the measured location and the actual location of the spare gate. For example, if a NAND gate needs to be mapped in a metal
only ECO, and the measured location is (100, 100), while the closest spare gate (spare_0) is located at (120, 120), then the
cost is calculated as (120-100)+(120-100)=40. The method involves multiple iterations, and the optimal solution is selected
based on the lowest cost.

To ensure that new instances are accurately mapped to the nearest spare gate instances, it is necessary to have a Design
Exchange Format (DEF) file. Without loading the DEF file, the GOF process will use spare gate types without precise mapping
to exact spare instances. However, P&R tools like SOC Encounter will map new instances in the new netlist to the closest
spare gates.

During the 'fix_design' command, GOF examines the top-level module and its sub-modules to identify any non-equivalent
points and optimize the logic cone to create a patch circuit with the minimum number of gates.

2.3.3 Spare Gates Number and Distribution

Spare gates are incorporated into the design and their percentage relative to the entire digital area is usually dependent on
the design maturity. For instance, the first version of a design typically requires a higher percentage of spare cells, usually
around 8-10% of the entire digital area. As the design progresses to the second version, a lower percentage of spare cells,
approximately 4-5% of the total digital area, is sufficient. By the third version, less than 3% additional spare cells may be
necessary. Additionally, during the backend placement process, any remaining empty space can be filled with extra spare
gates.

Besides the spare gate area percentage, the proportion of various spare gate types is also crucial. For example, a design with
126K instances may have spare gates in different categories, as depicted in the following figure:

e Red: 126 spare flip-flops

e Green: 252 spare NAND2 gates

e Yellow: 252 spare NOR2 gates

e Blue: 882 spare inverters (INV)

e Purple: 126 spare multiplexers (MUX)
e Black: 126 spare tie-lo (TIELO) gates

F SR e & &8 b A
Lo T s X A s Ay 6

Sas Bt L e i <o ‘g ; g o y
I R S T e

gL Lot e
C . “..Oo(%"gﬁotm

Figure 20: Spare Gates numbers and distribution

Usually, spare gates are uniformly distributed on the floor plan, as shown in figure 20. Nevertheless, if accessible, users can
adjust the distribution based on historical metal only ECO data. Blocks that are prone to design changes may require more
spare gates, while mature logic may require fewer spare gates.

2.3.4 Files and data requirements in Metal Only ECO

e Liberty files with extension ".lib'

e Other Verilog libraries if ".lib' files can't cover

e Implementation Netlist

e Reference Netlist

e DEF (Design Exchange Format) file. It's optional. If it is not loaded, GOF won't map the spare gate type cells to the exact spare
instances

e Spare gates pattern. It is in 'hierarchical_instance/leaf_instance' format. It has wild card '*' to match the spare gates in
Implementation Netlist

e Spare gates list file. If several users work on the same Implementation Netlist, the initial spare gates list file should be generated
only once. And new spare gates list file must be created every time an ECO is done

2.3.5 Steps to do automatic Metal Only ECO

A typical process for an automatic Metal Only ECO:

e Modify the original RTL
e Synthesize the new RTL to get Reference Netlist or synthesize sub-modules only and re-assemble the top level netlist
e Create GOF ECO script:
o Specify ECO name in 'setup_eco'
Load Liberty files and Verilog libraries
Load the Reference Netlist and the Implementation Netlist
Fix the design by 'fix_design'
Load DEF file, optional
Load LEF file, optional. It's useful in LayoutViewer feature
Create Spare Gates List by Spare Gates pattern or by reading in spare list file
Run 'map_spare_cells' to remap the patch from 'fix_design' command to all spare -type gates patch netlist and select the
closest spare instances for each gate in the patch netlist
o Report ECO status and write out ECO results
e Run the above ECO script by "gof -run eco_script.pl"

0 0 000 OO

2.3.6 Example GOF script for Metal Only ECO

© 2025 NanDigits Design Automation All Rights Reserved. Page 25

GOF User Manual

GOF script has the exact same syntax of Perl script. It runs the exported commands that access the netlist database and
modify the netlist.

The following shows an example of an automatic Metal Only ECO:

GOF ECO script, run metal only example.pl

use strict;

undo_eco;# Discard previous ECO operations

Setup ECO name

setup eco("eco metalonly example ");

read library("tsmc.lib");# Read in standard library

read_svf ("-ref", "ref svf.txt"); # Optional, must be loaded before read design, must be in text format
read_svf ("-imp", "ir vi.txt"); # Optional, must be loaded before read design, must be in text format
read_design("-ref", '"re /") ;# Read in Reference Netlist

read_design ("-imp "implemer on.gv");# Read in Implementation Netlist Which is under ECO

set top("topmod");# Set the top module that ECO is working on

set_ignore output (": 1 out*");

set_pin_constant (" able™, 0);

set_pin_constant (" 1 mode", 0);

read_def ("topmod.def");# Read Design Exchange Format file, optional. Loading DEF file before fix design makes ECO
physical aware
fix_design;

save session("curren
The following is me

name"); # Save a session for future restoration

ECO related

Specify spare cell pattern, when 'map spare cells' is done, a new spare list file is written out
with updated spare list.

get_spare cells("*/* SPARE*");

Comment the above line and use the following line to use spare list file

1f the spare list file has been generated already and gone through other ECOs

get spare cells("-file", "spare list file.txt");

set constraints("-num", "and<20"); # set constraints is optional to control AND cell usage under 20 counts
map_spare cells();

Use one of the following lines if external Synthesis Tool is used

fmap_spare cells ("-syn", "rc");

fmap_spare cells ("-syn", "dc_shell");

report eco(); # ECO report

check design ("~ ");# Check if the ECO causes any issue, like floating

write verilog (" verilog.v");# Write out ECO result in Verilog

exit;# Exit when the ECO is done, comment it out to go to interactive mode when 'GOF >' appears

2.3.7 Run and debug for Metal Only ECO

The script can be run by '-run' option.
gof -run run_metal_only_example.pl

User can insert 'die' command to let GOF stop in some point and do interactive debugs when ‘GOF >' shell appears. GUI mode
can be enabled by run 'start_gui' command.

Check Run and debug GOF script section for more detail

2.3.8 Gated clocks in Automatic Metal Only ECO

If the automatic metal only ECO has new gated clock cells added while the spare gates list doesn't have gated clock cell,
"convert_gated_clocks" API should be run to convert gated clock cells to 'MUX' type logic. GOF maps the 'MUX' type logic to the
spare type gates in 'map_spare_cells' API.

get spare cells("*/* SPARE*");
convert gated clocks();
map spare cells();

2.4 Metal Configurable Gate Array Cells ECO Flow

Metal configurable gate array cells are specially developed for Metal Only ECO. These cells come in two types, which are used
in different backend stages. The first type is gate array spare cells, which are typical filler or decap cells used in the original
flow. During the backend P&R stage, gate array spare cells such as GFILL/GDCAP are incorporated and distributed throughout
the design. The second type is gate array functional cells, which are used in post-mask ECO. Gate array spare cells are
replaced with gate array functional cells such as GAN2, GND2, and GXOR2.

2.4.1 Gate Array Cell Base Tile

The base unit of gate array cell is a tile. Every gate array cell consists of one or more tiles. Use one 5nm standard library as

example:

Tile Numbers|Spare Cells|Functional Cells

1 GFILL1 GTIE GINVDI1 GND2D1 GNR2D1

2 GFILL2 |GBUFDI GAN2D1 GOR2D1 GAOI21D1 GDN3DI
3 GFILL3 GAO21D1 GAN4D1 GOR4D1

4 GFILL4 |GINVDS8 GAN2D4

5 GFILLS |GMUX2DI GXOR2DI GXNOR2D1

6 GFILL6 |GBUFDS GSDFFRQDI GSDFFSQD1

8 GFILL8 |GINVDI16

12 GFILL12 |GCKLNQD6

Table: Tile Numbers in Gate Array Spare Cells and Functional Cells

Gate array cells have a larger size than normal standard cells. For instance, GFILL1 is four times larger than FILL1, and
GND2D1 is 25% larger than ND2D1. However, the power consumption and timing of these cells are similar.

Each gate array spare cell has a location defined by a DEF file. In Figure 21, the location of one GFILL8 spare cell is defined as
(Xg, Yg), with a tile height equivalent to that of GFILL1 and a tile width eight times that of GFILL1.

GFILLS tiles can be regrouped and rewired in metal layers to create different functional cells. For example, GBUFD1 requires
two tiles and implements a buffer function, while GAN4D1 uses three tiles to create a 4-input AND function.

© 2025 NanDigits Design Automation All Rights Reserved. Page 26

GOF User Manual

Gate Array Spare Cell GFILL8 and Functional Cells

: GINVD1 || GND2D1 GAN4D1 GBUFD1
Free Tile INVERT || NAND2 4 input AND BUFFER

[f L
L i L
[T T [T=UTT]
| I | I
w1

4 (xg,Yg)

Figure 21: Gate Array Spare Cell GFILL8 Regrouped Tiles to Form Functional Cells
2.4.2 Gate Array Automatic Mapping

When generating a patch, GOF synthesizes it using only gate array functional cell types. These functional cells are then
mapped to the most optimal nearby gate array spare cells with the minimum wire connection costs.

N —

Gate Array A
Four Tiles used
Four Tiles free

Gate Array C
All Tiles Free

A \ "
o /3 F'EEH) o=
Gate Array B
All four Tiles used

Figure 22: Gate Array Spare Cells Mapping to Functional Cells

Once the mapping and swapping process is complete, some gate array spare cells may have portions of their tiles being used
by several functional cells, as shown in Figure 22. To properly save the ECO results, the type of these gate array spare cells
should be changed. For instance, gate array A should have its type changed from GFILL8 to GFILL4. Any completely used up
gate array spare cells, such as gate array B with type GFILL4 and all four tiles being used, should be deleted.

The mapped gate array functional cells need to be moved to the locations of their corresponding gate array spare cells, with
the horizontal location X adjusted based on the starting tile location. For example, the GINVD1 instance should be moved to
(Xg+TW, Yg), and the GBUFFD1 instance should be moved to (Xg+TW *6, Yg), as shown in Figure 21.

GOF writes out an ECO verilog file and backend tools ECO scripts. In the verilog file, the location of the newly added gate
array functional cells is written in comments. GOF supports both Synopsys ICC script and Cadence Encounter script, both of
which have cell location placement support.

For example, when saving the result in an ICC TCL script, the cells in Figure 21 would have the following commands:

size_cell GFILLER 7256 GFILL1 # The original GFILL8 resized
create cell eco 3821 ubuf GBUFD1
create cell eco 3821 uan4 GAN4D1
create cell eco 3821 und2 GND2D1
create cell eco 3821 uinv GINVD1
set cell location -ignore fixed -coordinates "255.02
set cell location -ignore fixed -coordinates "254.42
set cell location -ignore fixed -coordinates "254.22
set _cell location -ignore fixed -coordinates "254.02

")

.28" eco_ 3821 ubuf # Xg+WT*6, Yg
.28" eco_ 3821 uan4d # Xgt+WT*3, Yg
.28" eco_ 3821 und2 # XgtWT*2, Yg
.28" eco_ 3821 uinv # XgtWT*1, Yg

BSOS S

w W W C

Encounter script format:

ecoChangeCell -inst GFILLER 7256 -cell GFILL1 # The original GFILL8 resized
addInst -loc 255.02 413.28 -inst eco_ 3821 ubuf -cell GBUFDl # Xg+WI*6, Yg
addInst -loc 254.42 413.28 -inst eco_3821 uand4 -cell GAN4Dl # Xg+WT*3, Yg
addInst -loc 254.22 413.28 -inst eco_ 3821 und2 -cell GND2D1 # Xg+WT*2, Yg
addInst -loc 254.02 413.28 -inst eco_ 3821 uinv -cell GINVDl # Xg+WT*1, Yg

Note:Tile size assumed to be 0.20 X 0.22; GFILLS8 location (Xg, Yg)=(253.82, 413.28)

2.4.3 Files and data requirements in Gate Array ECO

e Standard library (Synopsys Liberty) files with extension ".lib’
e Other Verilog libraries if ".lib' files can't cover

e Implementation Netlist

e Reference Netlist

e LEF files

e DEF (Design Exchange Format) files

2.4.4 Steps to do gate array spare cells ECO

A typical process for gate array spare cells ECO:

e Modify the original RTL
e Synthesize the new RTL to get Reference Netlist or synthesize sub-modules only and re-assemble the top level netlist
e Create GOF ECO script:
o Specify ECO name in 'setup_eco’
Load Liberty files and Verilog libraries
Load the Reference Netlist and the Implementation Netlist
Fix the design by 'fix_design'
Load LEF files
Load DEF files

0 0 0 0O

© 2025 NanDigits Design Automation All Rights Reserved. Page 27

GOF User Manual

o Extract gate array spare cells and functional cells by 'get_spare_cells'
o Run 'map_spare_cells' to convert the patch all gate array functional cells type and map to optimal gate array spare cells
o Report ECO status and write out ECO results

e Run the above ECO script by "gof -run eco_script.pl"

2.4.5 Example GOF script for gate array cells ECO flow

GOF script has the exact same syntax of Perl script. It runs the exported commands that access the netlist database and
modify the netlist.

GOF ECO script, run gate array cells eco example.pl
use strict;

undo_eco; # Discard previous ECO operations

Setup ECO name

setup_eco("eco g array example");

read_library(”fsA 1ib");# Read in standard library

read_svf ("-ref", " € "); # Optional, must be loaded before read design, must be in text format
read_svf ("-imp", " txt"); # Optional, must be loaded before read design, must be in text format

read _design 7") ;# Read in Reference Netlist

read _design("-imp", "implementation.gv");# Read in Implementation Netlist Which is under ECO
set top("topmod");# Set the top module that ECO is working on

set_ignore output ("scan out*");

set_pin_constant (
set_pin_constant ("s
read lef ("ts
read_def ("topmod.de ; # Read Design Exchange Format file

fix_design;

save session("current > name"); # Save a session for future restoration

Specify gate array cells, spare and functional

set dont use command can be used to exclude some gate array cells

get spare cells("-gate array", "G*", "-gate array filler", "GFILL*"); # Gate array cells extraction
map_spare cells();

report eco(); # ECO report

check design();# Check design

write verilog("e erilog.v");# Write out ECO result in Verilog

write tcl("eco ") ;# Write out TCL script for ICC

exit;# Exit when the ECO is done, comment it out to go to interactive mode when 'GOF >' appears

-ref",

G
G

2.4.6 TCL output file format after Gate Array ECO

current instance

current instance up ma/utx afe if

create net eco ganet wire270244

create net eco ganet gofrev net onl9915

create net eco ganet wire270246

create net eco ganet gofrev net onl9913

disconnect net [get nets n 223] [get pins slow cnt reg 1/D]

connect net [get nets eco ganet wire270244] [get pins slow cnt reg 1/D]

create cell eco gacell gofrev inst 19916 GND2D1

create cell eco gacell gofrev inst 19914 GOR2D1

create cell eco gacell inst270245 GMX2D1

create cell eco gacell gofrev inst 19912 GAN2D1

connect net [get nets eco ganet gofrev net onl9915] [get pins eco gacell gofrev inst 19916/A]
connect net [get nets slow cnt 2] [get pins eco gacell gofrev inst 19916/B]

connect net [get nets eco ganet wire270244] [get pins eco gacell gofrev inst 19916/Y]

connect net [get nets eco ganet gofrev net onl9913] [get pins eco gacell gofrev inst 19914/A]
connect net [get nets xg prbs 0] [get pins eco gacell gofrev inst 19914/B]

connect net [get nets eco ganet gofrev net onl9915] [get pins eco gacell gofrev inst 19914/Y]
connect net [get nets n 221] [get pins eco gacell inst270245/A]

connect net [get nets slow cnt 0] [get pins eco gacell inst270245/B]

connect_net [get nets fast data 9] [get_pins eco_gacell inst270245/S0]

connect _net [get nets eco ganet wire270246] [get pins eco gacell inst270245/Y]

connect_net [get nets n 223] [get pins eco _gacell gofrev inst 19912/A]

connect_net [get nets eco _ganet wire270246] [get pins eco_gacell gofrev_inst 19912/B]
connect_net [get nets eco ganet gofrev net onl9913] [get pins eco_gacell gofrev_inst 19912/Y]
set _cell location -ignore fixed -coordinates " 84 413.28" eco gacell inst270245

set_cell location -ignore fixed -coordinates 2 eco_gacell gofrev_inst 19912
set_cell location -ignore fixed -coordinates eco_gacell gofrev_inst 19914
set _cell location -ignore fixed -coordinates eco_gacell gofrev_inst 19916
current_instance

size cell FILLER implO_ 7256 GFILL3

size cell FILLER impll 30700 GFILLZ2

current_instance

remove cell FILLER impll 20939

remove cell FILLER impll 40219

2.4.7 Run and Debug in Gate Array ECO

The script can be run by '-run' option.
gof -run run_gate_array_cells_eco_example.pl

User can insert 'die' command to let GOF stop in some point and do interactive debugs when "GOF > " shell appears. GUI
mode can be enabled by run 'start_gui' command.

Check Run and debug GOF script section for more detail

2.5 Find Equal Nets between RTL and Netlist

For certain ECO cases, specifically those involving changes to combinational signals, manual ECOs may prove to be quicker and
more effective. However, identifying equivalent wires in the netlist for RTL signals can be a challenging aspect of such manual
ECOs. This is primarily due to the fact that combinational signals are often optimized during synthesis. To help alleviate this
issue, GOF offers an API called 'find_equal_nets' as well as GUI operations to assist in the search for equivalent nets in the
netlist for RTL signals.

2.5.1 Example script to find equal nets

The following is the example script for finding equal nets in netlist for RTL:

GOF script, find equal nets.pl
use strict;

read library(
set_define ("
set_define ("

nm.1ib");# Read in standard library

) g

set_inc dirs("/ > "/ nclude") ;

read rtl('-re "ref2.sv");

read svf ("-imp", "imp txt"); # Optional, must be loaded before read design, must be in text format
read design("-imp", "implementation.gv");# Read in Implementation Netlist

set top("topmod");# Set the top module

elab rtl;

find equal nets("row full", "sync rt"); # Find row full and sync start in the netlist

2.5.2 GUI Mode to find equal nets

Please refer to 'Find Equal Nets in Netlist Window' for the detail

2.6 Script Mode Full Layers Manual ECO Flow

In many cases, the ECO operations are well known by users. They can be inserting buffers to a 128bits bus, or adding
isolation AND gates to all outputs of a module. In these cases, manual ECO by scripts is more efficient and resource saving.

© 2025 NanDigits Design Automation All Rights Reserved. Page 28

GOF User Manual

GOF exports many APIs for ECO operations in GOF script.

2.6.1 Files and data requirements in Manual ECO

e Standard library (Synopsys Liberty) files with extension ‘.lib'
e Other Verilog libraries

e Implementation Netlist

e ECO locations

2.6.2 Steps to do Manual ECO In Scripts

A typical situation for a Manual ECO:

e Run LEC on modified RTL to Implementation Netlist
e Extract the failing points from the log file in the above LEC run
e Create a GOF ECO script:
o Define ECO name in ‘setup_eco'
Load Standard Cell libraries and Verilog libraries
Load Implementation Netlist
Locate ECO point
Use ECO APIs to fix the logic
o Report ECO status and write out ECO results
e Run the script

o
o
o
o

2.6.3 Manual ECO APIs list

These APIs change Implementation Netlist

buffer: ECO command. Buffer high fanout ECO nets

change gate: ECO command. Modify an instance in ECO

change net: ECO command. Change a existing net's driver

change pin: ECO command. Modify pin connection of instances by inserting gates, changing connection to other
signal

change port: ECO command. Change an output port's driver, or add gate after input port
del gate: ECO command. Delete gate

del net: ECO command. Delete net

del port: ECO command. Delete port

new gate: ECO command. Create new gate

new net: ECO command. Create a new net

new port: ECO command. Create a new port for the current top level module

For the full list of the APIs, user can type 'help'in 'GOF >' shell.
For the individual API, type 'help api_name'. For example:

GOF > help new port

Help for new port

new port: ECO command. Create a new port for the current top level module
ECO command. Create a new port for the current top level module

Usage: new port ($name, Qoptions);

Sname: Port name

@options:

-input: New an input port

—output: New an output port

-inout: New an inout port

Note: The port name has to be pure words or with bus bit, like, abc[0], abc[l]

Examples:

new_port ('prop con n', '-input'); # create an input port naming prop control en
new port ('r !); # create an output port with bus bit prop state[2]
new port ('r ! t'); # create an output port with bus bit prop state[3]

2.6.4 Example GOF script for Manual ECO

GOF ECO script, run example.pl use strict;

undo_eco; # Discard previous ECO operations

setup eco("eco example");# Setup ECO name

read library("ts 1ib") ; # Read in standard library

read _design("-ref", "r 7") ;# Read in Reference Netlist

read_design("-imp", "implem n.gv");# Read in implementation Netlist Which is under ECO
set_top("topmod");# Set the scope to the module that ECO is working on

The following API adds a mux in flop 'state reg 0O ' D input pin,

and connect up the original connection to pin 'A',

pin 'B' connect to net 'next state[7]', and pin 'S' to net 'sel mode'

the net can be replaced by format of 'instance/pin' , E.G. '.S(state reg 2 /Q)'

change pin("state reg 0 /D", "MX2x4", "", "_.A(-),.B(next state[7]),.S0(sel mode)");
report_eco();

write verilog("eco verilog.v");# Write out ECO result in Verilog

exit;# Exit when the ECO is done, comment it out to go to interactive mode when 'GOF >' appears

EifErE

nt

2.6.5 Run and debug in Manual ECO
Check Run and debug GOF script section for more detail
2.6.6 Handle repetitive work

A Perl 'for' or 'foreach' loop can handle repetitive work efficiently. For example, to add a 'AND' isolation gate for every output
port of a module.

GOF ECO script, add ands.pl
use strict;
undo_eco; # Discard previous ECO operations

setup eco("e xample"); # Setup ECO name

read library("tsmc.lib"); # Read in standard library

read design("-ref", "referenc 7"); # Read in Reference Netlist

read design("-imp", "imple 1t on.gv"); # Read in implementation Netlist which is under ECO
set top("topmod"); # Set the top module that ECO is working on

my @ports = get ports("-output"); # Get all output ports of module 'topmod'

For each output port of 'topmod', insert an 'AND' gate to enable it only when 'enable out' is high
my $cnt = 0;
foreach my $port (@ports) {
change port (Sport, "AND2X2", "eco add and $cnt", "-,enable out");
Scnt++;
}
report eco();
write verilog("eco veri v");# Write out ECO result in Verilog
exit;# Exit when the ECO is done, comment it out to go to interactive mode when 'GOF >' appears

2.6.7 Special characters

The special character '-' is used to represent existing connection. For example

change pin("UO0/A", "BUFFX1", "eco buf","-");

A buffer is inserted into A pin of instance U0. The old existing net drives the new buffer now.

The special character '."is used in ECO new instance name if the new instance needs to be in the same hierarchy as the ECO
spot.

change pin("u_gcif/u num2/u_sparel/B", "AOI21X2",".", "netl,net2,net3");

If the instance is empty, GOF creates 'AOI21X2'in the current top level. With ".", GOF creates 'AOI21X2' new instance in
hierarchy "u_qcif/u_num2/u_sparel".

© 2025 NanDigits Design Automation All Rights Reserved. Page 29

GOF User Manual

2.7 Script Mode Metal Only Manual ECO Flow

In Manual Metal Only ECO, any new added gates are automatically mapped to spare gate instances by 'map_spare_cells
command. A Design Exchange Format file has to be loaded for the tool to find optimal spare instances. If the file is not
present, the mapping is skipped.

2.7.1 Files and data requirements in Metal Only Manual ECO

e Standard library (Synopsys Liberty) files with extension ".'lib'

e Other Verilog libraries

e Implementation Netlist

e DEF (Design Exchange Format) file. If it is not loaded, GOF won't map the spare gate type cells to the exact spare instances

e Spare gates pattern. It is in ‘hierarchical_instance/leaf_instance' format. It has wild card '*' to match the spare gates in
Implementation Netlist

e Spare gates list file. If several users work on the same Implementation Netlist, the initial spare gates list file should be generated
only once. And a new spare gates list file should be created every time ECO is done

e ECO locations

2.7.2 Example GOF script for Manual Metal Only ECO

Manual Metal Only ECO, manual metal eco.pl
use strict;
undo_eco;
setup_eco ("met
set_log file ("
read library("/prj/li
read design("-imp", "/p
set_top ("mtop");

new_port ("nout7", "-output");# Create a new port 'nout7'

Place the port to 60000, 1000000. It's approximate position, the main purpose is for

spare instances selection

place port ("no ", 60000, 100000);

new_port ("n , "-output");# Create another port

place port ("noutg", 120000, 81000);

'nout8' is driven by an invert first, and the invert's input is driven by pin 'cmpmod/rego/QON'
change port ("nout8", "INV X1M", "", "cmpmod/re
Drive the 'nout7' by 'INV XIM' and leave the input unconnected, but the mapped
spare instance name is returned.

my $inst = change port ("nout7", "INV X1M", "", "");
Drive the new instance's input by a flop, and specify the flop's connection in the 4™ argument
change pin("Sinst/A", "SDFFRPQ X4M", "', \n".CK (cmp /rego/CK) , .D (cmpmod/r ON), .R(1'b0), .SE(1'b0),.SI(1'b0O)");

read def ("/prj/de
get spare cells ('
Before mapping to spare gates, set a large number in buffer distance, so that GOF does not
add buffers for long connections.

set buffer distance(9999999);

The following 'map spare cells' command maps the three new ECO instances to the optimal

spare instances.

map spare cells;

report eco;
write verilog ("imp eco0123.v");

2.7.3 Run and debug in Metal Only Manual ECO

The script can be run by ‘-run' option.
gof -run manual_metal_eco.pl

Check Run and debug GOF script section for more detail

2.8 GUI Mode Full Layers ECO Flow

The following paragraph demonstrates how to insert buffers and inverters into a circuit in GUI mode.

2.8.1 Start up GOF in GUI Mode

Start up GOF by the command line

gof -1lib t65nm.1lib -1lib io.lib netlist port.v
For detail usage, visit this link

https://nandigits.co/usage.htm

In GofViewer netlist window, press ctrl-g or menu commands->'Launch GofTrace with gate'. Fill in the instance name that
needs ECO.

(¥ Gofviewer [File-./v.gz [long_port.v] [Topdong_port] ID demo - o) x|
Fle Fnd Commands Options Help

——> it 28 (7

Log_File 2|
@ Topflong_port)

Enter gate instance to draw on 'ﬂltm

E.G. 'u_abc.U1234° or 'u_abc/U1Z34'
Alternate way is to dragSairop from GofViewer

Gate instance: [oresxtx fifo/t<_buf_0/din_b4_req[27] | #
OK

=

Cancel

H~ = =] =

Figure 23: Load gate to schematic

2.8.2 Create Partial Schematic

In GofTrace schematic window, use mouse middle button to expand the schematic. In this case, pin D of the flop should be
inserted an invert.

© 2025 NanDigits Design Automation All Rights Reserved. Page 30

/usage.htm

GOF User Manual

:; GofTrace, Schematic 0, Zoom 0U67:1, 1D dema, _inlil
Al Schematic ECD Waveiorms Commands Options Help
FHE Q@ to WME ko
L] L] L T T T L] E
eere.atn_fife tx buf 0.din 4 res(27]
1271
T :ftr.ﬁh.h_hr.orsm
E_rx - Fl
data_in| 3>
)
.
|One port selected: Top(long_port).core(long_core).xtx_fifo(xtx_fifo).te_buf_0(buf6_dwdd_in_ratio] _out_ratiol }idin_bd_reg[Z7]fD

Figure 24: Partial Schematic for GUI ECO
2.8.3 Do ECO on schematic

Check ECO button to enable ECO mode

EG{-FF{'G, Schematic 0, Zoom 0L67:1, ECO name eco2 167, 1D dema, -dn]ﬁl
Fle Schematic ECO Waveforms Commands Options Help

=R8 @q #. HFE secoppPpp X4 aQ L@
T T T T T T T ;

esrectn_flfe b buf 0. 4ln b4 raa(2?]
re_swszrnza_ain 14
data_ia[3
r}
=L
‘One net selected: n_ 264

Figure 25: Schematic in ECO Mode

Press mouse-left-button on the wire to select it. Click ECO button ‘Insert gates into connections’, select the right invert in the
gate type selection window.

BH GofECo, Schematic 0, Zoom 0.67:1, ECO name eco2167, 1D deme, =100 x|
File Schematic ECO Waveforms Commands Oplions M|
BWa Qal ¥ HFE secoDHPDHH XL CLE |
: - r T : 15
mmmmammm@_
Select a gate to insert into the selected thons
Filter by: 4 String . File
I Al

Fill in gace numsbar | =
o be inserted

Type in portion of the gate
nans String (case insensitive)

1B, and press enter.
IHV. _HVT
IRV X1P2HC
INV X1P4M HVT /
| S 1=
- OK | comcel | hew | |

Figure 26: Select Gate in GUI ECO

In ‘Pin Connections' setup window, use default ‘Complete Loop' option, so that the gate can be inserted in the net.

Eﬁpec'rfv Pin Connections =101l
¥ 4 Complete Loop . - Unconnected
Al 4 Complete Loop - - Undriven - Driven by: |

_ox [T

Figure 27: New Cell Pin Connection Selections

Click OK and the invert is inserted.

© 2025 NanDigits Design Automation All Rights Reserved. Page 31

GOF User Manual

=10)]
File ECO W e ks Options el
WS |a0 - HE wecopHpsp X4 L@ LA
T T T T T T T E
e
./
PR . r.|..-=-‘2.:__l:ﬁa;.zfm_.°l i
1xw_s3aa_wvE
rd
o
e P IHA.IU-\-IJ-HI!/
dskn_in| w: -
'
[~ a— =
{One net selecled: n_264

Figure 28: Manual ECO with New Gate Inserted
2.8.4 Save ECO in GUI Mode

Press ECO button ‘Save ECO result to file'. And select the format to be saved. The supported formats include verilog netlist,
SOC Encounter ECO script, GOF script, TCL script and DCShell script.

'ﬁ!{iull'(' @, Schematic 0, Foom 0.67:1, ECO name eco2 167, ID dema, In'ﬂ
File Schematic ECO Waveforms Commands Options Help |

B8 aal s HE meophpd X146

Directary: feot ~| &

warilog netlist (*.v)]
S0C Encoumter ECO script {*.soce)

IIJNHI?{J?UI!;‘!’“"::J!“ - T &.rm ('#) I |
o 2 = 1C Compiler format for synopsys (*icc) =
e _inlEF] | |
File name: Tel script for synopsys (*.tcl) Save |
3 DC scripl for synopsys (*.desh) | | ’
I Files of type: ay files (+) .__"J il =

One net selected: n_264

Figure 29: Save ECO in GUI Mode

2.9 GUI Mode Metal Only ECO Flow

Metal ECO can only use existing spare gates on the silicon. GOF controls how to use these spare gates.

2.9.1 Methods for Metal Only ECO

Four methods are supported in Metal Only ECO:

1. User can add any type of gates and let the tool map to the spare type gates, Place and Route tool should map the spare type gates
to the exact spare gate instances

2. User can add any type of gates and let the tool map to the exact spare gate instances

3. User can add only spare type gates and let the tool map to the exact spare gate instances

4. User can pick the exact spare gate instances, and connect and disconnect up the instances in ECO

Note: 'Spare type gate' refers to the gate type, 'INVX2', 'NAND2X2'. 'Exact spare gate instance' refers to the spare instances in
the design, E.G. 'sparel/spare_invx2'

2.9.2 Setup and use cases

The detail setup for four method can be found in GOF ECO Metal Only ECO. Use cases can be found in online document.

2.10 Report Timing
Timing can be reported before or after ECO by report_timing API.

2.10.1 Report Timing APIs

Timing report related APIs are these:

create clock: Timing command and GOF Formal command. Create clock for fault verification
set_initial trans: Timing command. Set initial transition for clock

set_input delay: Timing command. Set input delay

set_output_delay: Timing command. Set output delay

set_output load: Timing command. Set output load to all output ports
set_input transition: Timing command. Set input transition to all input ports
set false path: Timing command. Set false path

set_clock uncertainty: Timing command. Set clock uncertainty

report timing: Timing command. Report timing

list wireload: Timing command. List all wireload defined in the liberty files
set wireload: Command for Timing Report. Set wireload for one liberty library

2.10.2 Timing before ECO

In order to report the timing in paths of interest before a functional ECO, it is necessary to specify the option of 'from,"' 'to," or
'through' in the report_timing function. By comparing the numbers obtained before and after a functional ECO, an appropriate
timing ECO method can be selected.

2.10.3 Timing after ECO

After performing a functional ECO, report_timing can utilize the 'from," 'to," or 'through' options. If the function is executed
without specifying any of these options, it will report the timing of paths that traverse the ECO instances.

© 2025 NanDigits Design Automation All Rights Reserved.

Page 32

/gof_usecases.php

GOF User Manual

D Q
D Q
CK QB CK 5
RN @
1 RN
D Q D Q
Report timing on paths that go
CK QB through the ECO instances CK QB
RN RN

Figure 30: Report timing on paths through ECO instances

3 GOF Formal: Fault Verification Tool
3.1 GOF Formal

GOF Formal is one of the function components integrated in GOF platform. It provides a formal method to calculate fault
coverage in an IC design in functional safety.

1S026262 defines functional safety as "the absence of unreasonable risk due to hazards caused by malfunctioning behavior of
electrical and electronic systems". Four ASILs are proposed to represent four degrees of automotive hazards. In IC
component, the coverage in the ASIL requirement is the fault coverage in the logic circuit. Specifically, single point fault metric
(SPFM) and latent fault metric (LFM) should meet minimum numbers for the corresponding ASIL levels. The following table lists
the three ASIL levels with specific coverage numbers defined in the standard.

ASIL SPFM LFM
B >90% >60%
C >97% >80%
D >99% >90%

The traditional method to calculate the fault coverage is pure simulation based. It's inefficient and time consuming. GOF Formal
provides a formal and efficient way to calculate the SPFM and LFM numbers of a logic design. It can work in a standalone mode
to calculate the coverage metric. And it can also work as a supplemental method to cover the faults left over from simulation
based process.

3.1.1 Single Point Fault and Latent Fault

Single point fault (SPF) is the fault in the IC design that leads directly to the violation of a safety goal which is defined as
observation point in the "Cone of Influence" section below and no fault in the IC circuit is covered by any safety mechanism.
However, if there is safety mechanism, but the fault can't be covered by the safety mechanism, the fault is called residual fault
according to the standard. In calculating SPFM, residual fault is treated as single point fault. Latent faults are multiple-point
faults not detected by a safety mechanism or perceived by the driver. The latent fault metric is to determine whether coverage
by safety mechanisms is sufficient to protect against risk from latent faults in the IC design.

3.1.2 Fault Model

GOF Formal injects faults to each input port and each pin of logic gates. Each input port has stuck-at 0 and stuck-at 1 faults
injected. Every combinational gate has stuck-at 0 and stuck-at 1 faults injected into each pin. For flip-flop, stuck-at 0 and
stuck-at 1 faults are injected into each data and clock pin. And flip-flop has Single Event Upset (SEU) fault injected to the state
in random time.

SEU
SA0/1 \ SA0/1 SA0/M
SA0/1 g — A , \ l SA
Z _ i
-— B SAO0M D Q
A \ [SA0/1
Combinational gate has Flip Flop has faults stuck-at 0 and —1” CK QB [
faults stuck-at 0 and stuck-at 1 on each data pin and RN
stuck-at1 on each pin. Single Event Upset on the cell.
This NAND gate has 6 faults This Flop has 9 faults

Figure 31: Fault model for logic gates

3.1.3 Cone of Influence

SPFM and LFM metrics can be calculated in two methods, rough mode and detail mode. The rough mode is done by structural

© 2025 NanDigits Design Automation All Rights Reserved. Page 33

GOF User Manual

analysis of the Cone of Influence. The detail mode is calculated by formal analysis of the Cone of Influence.
Two types of strobing points shall be defined for the Cone of Influence extraction.

e Observation Points
e Diagnostic Points

The observation points are the outputs or registers that are impacted by the injected faults which affect functional safety and
violate safety goal. The diagnostic points are the outputs or registers to check if injected faults can be detected at these
strobing points or perceived by the up level driver.

The logic back traced starting from the observation points and the diagnostic points all the way to the inputs or black boxes.
The Cone of Influence (COI) is created for the observation points and the diagnostic points respectively. Each cell and each
input port in the cones will be injected faults according to the Fault Model section.

Safe
Observation
Points
Diagnostic
Points
Safe

Figure 32: Cone of Influence
3.1.4 SPFM and LFM Calculation

In Figure 32, all faults that are outside of the two COIs are safe faults.

Area A has faults that are observable but not detectable, so they can be classified as residual faults. And they are called
single point faults if safety mechanism is not implemented for the design, in which case the diagnostic points are not present
and Area B and Area C are zero size. However, if they don't propagate to the observation points in the detail formal COI
analysis, they can be classified as multiple point faults. For example, TMR is implemented on Area A. The majority faults in this
area will become multiple point faults.

Area B has faults that are classified as multiple point faults, since they are observable and detectable. In the rough structural
COI analysis, the worst SPFM metric can be calculated by assuming them as all residual faults and the best SPFM metric by
assuming them as propagatable to the diagnostic points. So the detail formal COI analysis will determined the fault
classification.

Area C has faults that are classified as detectable multiple point faults, but they are not observable. The detail formal COI
analysis will be run on Area C to check if the faults in this area can not propagate to the diagnostic points, then they can be
classified officially as latent faults. The best and worst LFM metrics can be gained by the rough structural COI analysis method.

The Single Point Fault Metric (SPFM) can be calculated according to the following equation.

SPFM =1 - Z()\SPF+)\RF)/Z()\)

where:

)\SPF: Single Point Fault when there is no safety mechanism
)\RF: Residual Fault

)\: Any Fault

The Latent Fault Metric (LFM) can be calculated according to the following equation.

LFM =1 - Z()\MPF_UD)/Z()\MPF - Aspr -)\RF)

where:

)\MPF?UD: Multiple Point Fault not detected by the driver
)\MPF: Any Multiple Point Fault
)\SPF: Single Point Fault when there is no safety mechanism

)\RF: Residual Fault

3.1.5 Rough Method by COI Analysis

In the rough method calculation by analyzing COI structure, the best and worst metrics can be quickly calculated.
In the example shown in Figure 33, the faults are distributed as:

Safe Faults: 550

Residual Faults in Area A: 122

Multiple Point Faults in Area B: 1208

L]
L]
L]
e Multiple Point Faults in Area C: 2582

The best SPFM assumes the faults in Area B are propagatable to the diagnostic points. The single-point/residual faults
Z()\SPF+)\RF) has number 122 only in Area A. Therefore, the best case SPFM is 97.3%.
The worst SPFM assumes the faults in Area B are all residual faults, so Z()\SPF+)\RF) has number 1330 which is 1208 plus

122, and get calculated metric to be 70%.

© 2025 NanDigits Design Automation All Rights Reserved. Page 34

GOF User Manual

The best LFM assumes the faults in Area C are all detectable. Z()\MPF_UD) is zero, So LFM is 100% in the rough structural
COI analysis.

The worst LFM assumes the faults in Area C can not propagate to the diagnostic points, and they are not detectable.

Therefore, Z()\MPF_UD) has the number of 2582, and the worst LFM is 59.5%.

Safe (550)
Observation
Area A (122) Points
Area B (1208)
Area C (2582) Diagnostic
Points
Safe

Figure 33: Example fault numbers in COI
3.1.6 Faults Injection Formal Verification

The formal COI analysis needs to be run to get the final accurate metrics. For each fault injected, GOF Formal either proves
that a path exists to propagate the fault to the observation or diagnostic points, or disprove there is such path. A path means
by toggling input ports in some limited clock cycles, the fault can propagate to the observation/diagnostic points.

GOF Formal doesn't require stimulus nor is a testbench required. The tool automatically determines the stimulus. For each fault
injected, two designs are compared to see if the specified outputs are equal. One design is the fault injected design, the other
is the original design. The specified outputs are the observation points or the diagnostic points set by user. The faults to be
injects can be thousands or millions. GOF Formal uses cluster command to fully utilize the cluster computing power. Thousands
of jobs can be submitted in parallel to the cluster machines with only one license being used.

After the detail formal COI analysis of the above example, the residual fault numberis 178, and the final SPFM is 96%. The
latent fault numberis 260, so the final LFM is 94%.

3.1.7 FUSA Metrics Improvement

In order to improve the fault coverage, safety mechanisms should be built in the IC design. There are several approaches for
safety mechanism implementation.

e Redundancy design, double modular and triple modular redundancy
e Parity or error correction implementation
e Periodically self check

In Figure 33, a safety mechanism can be a double modular design or ECC design. The diagnostic points would be the alarm
bits in the double modular error bit, or ECC error recovering signals. For SPFM metric improvement, those gates in Area A that

are not covered by safety mechanism can be modified to support TMR (Triple Module Redundancy), so that)\SPF can be
further reduced and SPFM improved accordingly. See this TMR ECO Case

3.2 FUSA Example Code

3.2.1 Script for SPFM and LFM Calculation

One example script for SPFM and LFM calculation:

set log file("spfm 1fm.log"); # Set log file name

read library("art.5nm.1ib"); # Read in liberty file

read design('-imp', 'ecc process.v'); # Read in the design block
Set_top(”vvc # Set the top module name

create clock("data clk", 2);

set_pin constant ("tes je", 0); # Set pin constraint

set_observe points ("d t*"); # data out[31:0] affects functional safety
set_observe points("synd out"); # synd out affects functional safety
set_detect points("sb e ") # Safety mechanism detecting output
set_detect_points("db err o"); # Safety mechanism detecting output
verify_faults(”firL,”); # Calculate and print SPEM and LFM, Use verify faults("-coi") for fast SPFM/LFM calculation
gexit;

3.2.2 FUSA Debug One Fault

The API verify_faults can run on an individual fault to check if the fault can propagate to the observation points. If the fault is
observable, a VCD file can be dumped to show how to toggle the input ports cycle by cycle to propagate the fault. All internal
signals waveforms are captured in the VCD file.

The following script is to check if one SEU fault can propagate. If yes, a VCD file is dumped:

set_log file("sp
read library("a
read design('-imp',
set_top("ecc top"):; #

set pin constant ("test mode", 0); # Set pin constraint

set observe points("data t*"); # data out[31:0] affects functional safety

set_observe points("synd out'); # synd out affects functional safety

To check if the fault can be propagated to the detect points, set observe points on the detect points

verify faults("u ecc it reg:SEU", "-vcd", "debug seu.vcd"); # Check if the Single Event Upset on the flop can propagate
gexit;

Set log file name

Read in liberty file
process.v'); # Read in the design block
Set the top module name

4 Script Mode Detail Features
4.1 GOF Script Interface

The GOF Script Interface can access and modify the internal netlist design database through exported APIs. When the Al
Client is activated, users can describe ECO changes in natural language. GOF then translates these descriptions into internal

© 2025 NanDigits Design Automation All Rights Reserved. Page 35

gof_display_doc.php?document_type=tmr_eco

GOF User Manual

API calls to implement the netlist modifications.

4.1.1 Get Help for APIs

Type 'help' in interactive shell 'GOF >' to list all APIs
Type 'help set_*' to list all APIs matching 'set_', like 'set_top', 'set_invert'
Type 'help individual-API' to list detail of the API

L]
L]
L]
e Visit https://nandigits.co/gof manual.php for online manual

4.1.2 GOF Script APIs feature list

e Compatible with Perl

e Automatic ECO with fix_design/fix_modules APIs

e Rich ECO APIs to do manual ECO

e ECO operations are reversible

e ECO result can be loaded in schematic on the fly

e Integrated commands to browser netlist and check design status

4.1.3 Full API list

add_mapped_instance: Add mapped instance pair between REF and IMP

al_debug noneq: Debug non-equivalent point with AT

buffer: ECO command. Buffer high fanout ECO nets

change gate: ECO command. Modify an instance in ECO

change net: ECO command. Change a existing net's driver

change pin: ECO command. Modify pin connection of instances by inserting gates, changing connection to other
signal

change port: ECO command. Change an output port's driver, or add gate after input port
check design: Check if the netlist status, searching for unresolved modules, floating and multi-drivers
compare: Logic equivalence check on output port and register input pins

compare nets: Check equivalence of two nets in the reference and implementation netlist
convert gated clocks: ECO command. Convert gated clocks to MUX logic.

create clock: Timing command and GOF Formal command. Create clock for fault verification
create equation: Create equation for minterms and not care values.

create pin mapping json file: Create pin mapping file between original synthesis netlist and pre-ECO netlist
create reset: Create reset for the design

current design: Set the current top level module

current instance: Set the current instance, alias of 'set inst'

del gate: ECO command. Delete gate

del net: ECO command. Delete net

del port: ECO command. Delete port

dft drc: DFT DRC checker

do auto change: AT command, do automatic ECO change

do smart query: AI command, do smart query conversion

elab rtl: Elaborate on RTL design

elaborate: Elaborate and compile RTL files

exist inst: Check if an instance exists

exist wire: Check if a wire exists

find equal nets: Find equivalent nets in IMP for the listed nets in REF, the results are printed out on the screen
fix design: ECO command to fix the design in automatic ECO

fix logic: ECO command. Fix listed points

flatten modules: Flatten hierarchical modules in reference netlist

get cell cofactors: Get combinational cell pin Shannon expansion cofactors

get cell info: Get information of a module or instance

get cells: Get all cells in the current module or sub-modules

get conns: Get connections of net or pin in the top level module, return the leafs and the hierarchical
connections

get coord: Get an instance's coordination

get definition: Get instantiation of instance

get driver: Get the driver of a net or pin

get_drivers: Get the drivers of a net or pin

get_instance: Get instance in the top level module

get_instances: Get all hierarchical instances in the top level module

get leaf pin dir: Get leaf cell pin's direction input/output/inout

get_leafs count: Get all leaf cells name and count in the top level module, return an array
get_1lib cells: Get leaf gates in libraries

get_loads: Get loads of net in the top level module, return the leafs connections

get loads phase: Get loads of net with phase in the top level module, return the non-buffer/inverter leafs
connections

get_logic cone: Get logic cone of nets or pins

get_modules: Get modules under current module

get_net of: Get net name connecting to a pin

get _nets: Get nets that matching pattern

get _path: Get current hierarchical path

get pins: Get pins of instance or module

get ports: Get all ports in the current top level module

get _ref: Get the reference of the instance, return leaf cell name or hierarchical module name
get resolved: Resolve the relative path to module and leaf item

get_roots: Get root designs name

get scan flop: Get scan flop for the non scan flop

get spare cells: ECO command. Get spare cells

get spare_in use: Get spare cells used in the ECO

gexit: Exit the command interactive mode

gof version: Print out GOF version

gprint: Print the message and save to log file

insert gate: ECO command. Insert gate into instance pin

is leaf: Check if a module or instance is leaf cell

is pin masked: Check if an instance pin has been masked in the current constraint

is scan flop: Check if an instance is scan flop

is seq: Check if an instance or a leaf cell is a specific sequential cell

list wireload: Timing command. List all wireload defined in the liberty files

map spare cells: ECO command. Map all new created cells to spare cells

new gate: ECO command. Create new gate

new net: ECO command. Create a new net

new port: ECO command. Create a new port for the current top level module

place gate: ECO command. Place an instance to a specific position

place port: ECO command. Place port position

pop top: Pop out the saved top level module from the stack and discard the current setting
post recovery: ECO command. recover deleted gates after ECO

preserve modules: Preserve wires in the modules listed or all modules

push top: Set the current top level module and push the previous setting to stack, pop top can retrieve it
read ctl: Read CTL file

read def: Read DEF file

read design: Read verilog netlist files

read file: Read timing violation report file

read lef: Read LEF file

read library: Read standard library or verilog library files

read rtl: Read RTL files

read rtlpatch: Read RTL Patch file

read sdf: Read SDF Standard Delay Format file

read_sub module netlist: Read in new synthesized netlist file

read_sub _module svf: Read in new synthesized design SVF file

read_svf: Read Synopsys SVF text files

read vcd: Read VCD file

rename net: ECO command. Rename a net name

replace_sub _module netlist: Replace sub-module in the design by a new re-synthesized sub-module netlist and write
to a new top netlist

replace_sub _module svf: Replace sub-module SVF in the design by a new re-synthesized sub-module SVF file content
report_eco: Report ECO

report spares: Report Spare cells

report timing: Timing command. Report timing

restore_session: Restore ECO session

rtl compare: RTL to RTL compare

rtl lec: RTL to RTL logic equivalence checking

© 2025 NanDigits Design Automation All Rights Reserved. Page 36

/gof_manual.php

GOF User Manual

run: Run Netlist processing script

run lec: Run Logic Equivalence Check of the Implementation Netlist vs the Reference Netlist
run nl: AI command, run natural language command

save session: Save ECO session

sch: Launch schematic to verify ECO

set_ai config: Config AI settings

set_al remote server: Setup remove AI server

set_auto fix floating: ECO setting. Enable automatic fixing floating input ports after fix modules
set bfix: Enable or disable BFIX features which is for precise combinational logic fix
set_blackbox: Set Blackbox on Modules

set_bound opti: Set boundary optimization checking

set_buffer: Set buffer type. The tool automatically picks one if the command is not called
set_buffer distance: Set distance limit for inserting buffer

set_check isolation: Enable isolation cell check before change pin

set_clock uncertainty: Timing command. Set clock uncertainty

set_cluster command: Set cluster command in parallel fault verification

set_cluster timeout: Set time out for cluster command

set_constraints: Set constraints for map spare cells command

set cutpoint thresh: Set Cutpoint Threshold

set_cutpoint ultra: Set the level in doing CutPoint Ultra

set_define: Set define

set_detect points: set detect points

set _disable cross_hierarchy merge: Set this variable to disable cross hierarchy register merging
set _disable lib cache: Disable liberty file cache

set dont fix modules: Set dont fix property on modules

set dont use: Set dont use property on library cells

set_eco _effort: ECO setting. Set ECO effort

set_eco point json: Set a JSON file name for saving the ECO point data.

set_equal: ECO setting. Set two points to be equivalent in the Reference and Implementation Netlists
set_error out: Set error out setting

set_exit on error: Whether the tool should exit when the script runs into an error
set_exit on warning: Whether the tool should exit when the script runs into a warning

set false path: Timing command. Set false path

set floating as zero: Set floating net as constant zero

set _flop default eco: Set flop default eco by inverting input pin and output pin

set _flop merge enable: Inside module flop merge enable

set _high effort: Set high ECO effort on modules

set _ignore instance: ECO setting. Set ignored sequential or blackbox instances in ECO

set _ignore network: ECO setting. Set ignore network in ECO

set _ignore output: ECO setting. Set ignore output ports

set _ignore pin: set ignore on the pin of black box like memory in logic equivalence checking
set _inc dirs: Set include directories

set _initial trans: Timing command. Set initial transition for clock

set input delay: Timing command. Set input delay

set input transition: Timing command. Set input transition to all input ports

set inside mod: Set fix scope inside the current module

set inst: Set the current instance, alias of 'current instance'

set inv: ECO setting. Set two points to be inverted in the Reference and Implementation Netlists
set invert: Set invert type. The tool automatically picks one if the command is not called
set keep format: Keep the format of the original verilog when ECO is done (Keep original netlist format)
set keep tree: Set keeping buffer tree, so that buffer tree won't be removed in ECO

set keypoints rep in ref: ECO setting. Replace keypoints naming in Reference Netlist.

set leaf: Set a hierarchical module to be leaf. Useful to stub hierarchical instances

set log file: Set log file name

set low effort: Set low ECO effort to speed up ECO process

set _mapped point: ECO setting. Set two points mapped in Reference and Implementation Netlists
set_mapping method: LEC setting. Detecting flop phase inversion.

set max lines: Set max output lines

set max_ loop: Setup max loop, the tool stops logic optimization when max loop number is reached
set_mod2mod: Set reference module mapping to implementation module

set mu: MU configuration, setup MU value for BDD threshold

set multibit blasting: Set blasting on multibit flops

set multibit output: Set multibit flops output in ECO results

set_net constant: Set net to a constant value in DFT constraint

set no patch opt: Disable patch optimization

set _noexact_pin match: ECO setting. Don't match some special pins

set_observe points: set observe points

set_one_ fault: Set one fault for verify state command

set_only use: In optimize patch, Only use these cells listed

set_output_delay: Timing command. Set output delay

set output load: Timing command. Set output load to all output ports

set phase adjust_en: Enable phase adjusting

set_phase inv: ECO setting. Set flops invert phase in the Reference and Implementation Netlists
set physical aware: Enable physical aware ECO

set pin constant: Set pin to a constant value in DFT constraint

set power: Set power pins connections for leaf cell

set_preserve: Set preserve property on instances. The tool does not remove them in ECO
set_quiet: Run script in quiet mode

set _recovery distance: Set distance limit for gates recovery in ECO

set_remove undsc_in ref: ECO setting. Remove last ' ' in flop instance in Reference Netlist
set_rtl eco full hier fan: RTL ECO has full hierarchical fanout

set save mapped instance: Dump key points mapping information for LEC

set scan pairs: Set scan output ports, the command is used with dft drc

set_sn vs rn: Check set pin and reset pin priority

set_solver timeout: Set time out for solver

set_tiehi net: Set tiehi net name, it is used if tiehi net is needed in ECO

set _tielo net: Set tielo net name, it is used if tielo net is needed in ECO

set _time frame limit: GOF Formal only. Set limitation for time frame in fault verification, default 35
set top: Set the current top level module

set _top ref: Set the top level module for the Reference design

set tree: Set the current tree, if there are more than one sets of databases

set _user match: Set match between multi-bit flops to multi-bit flops, and between multi-bit flops to single bit
flop

set verbose: Run script in verbose mode

set wireload: Command for Timing Report. Set wireload for one liberty library

set write verilog remove backslash: Enable write out verilog with backslash removal

set write verilog uniquify: Enable write out verilog in uniquified mode

set xm flop merge enable: Cross module flop mapping and merging enable.

setup eco: ECO command. Setup ECO

source: Run Netlist processing script.

spec_to rtl: Spec to RTL generation by AI scoring method

start gui: Start GUI windows

stitch scan chain: ECO command. Stitch scan chain

sSuppress errors: Suppress error messages

suppress_warnings: Suppress warning messages

swap inst: ECO command. Swap two instances with same input/output pins.

undo_eco: ECO command. Undo eco operations, restore the database to the original state.
verify faults: GOF Formal only. Verify fault in stuck-0 or stuck-1 mode

verify state: GOF Formal only. Verify if a sequence exists to set the signal

write compare points: Write all compare points to a report file

write dcsh: ECO command. Write ECO result in Design Compiler dcsh script format

write formality help files: Write formality help files including mapped instance list and modified netlist files
if necessary

write perl: ECO command to write ECO result in Perl script

write soce: ECO command. Write ECO result in Cadence SOC Encounter script format

write spare file: ECO command. Write spare cells list to a file

write tcl: ECO command to write ECO result in Design Compiler tcl script format

write verilog: ECO command to write ECO result in Verilog netlist

4.1.4 API grouping
4.1.4.1 Netlist Browse APIs

One key element to do efficient manual ECO is to isolate the ECO spots quickly. The following APIs are for fast Netlist

© 2025 NanDigits Design Automation All Rights Reserved. Page 37

GOF User Manual

Browsing.

get cells: Get all cells in the current module or sub-modules

get conns: Get connections of net or pin in the top level module, return the leafs and the hierarchical
connections

get driver: Get the driver of a net or pin

get drivers: Get the drivers of a net or pin

get instance: Get instance in the top level module

get instances: Get all hierarchical instances in the top level module

get 1lib cells: Get leaf gates in libraries

get loads: Get loads of net in the top level module, return the leafs connections

get _modules: Get modules under current module

get_net of: Get net name connecting to a pin

get nets: Get nets that matching pattern

get_pins: Get pins of instance or module

get_ports: Get all ports in the current top level module

get_ref: Get the reference of the instance, return leaf cell name or hierarchical module name

For example, to get data pins of flops in one module. The script can use these browse APIs

my @flop data pins;
set_top ("module name'");
my @flops = get _cells("-type", "ff");
foreach my $flop (@flops) {
my @dpins = get pins("-data", S$flop);
push @flop data pins, $dpins;
}

After run the script, @flop_data_pins have all data pins of all flops in the module.
4.1.4.2 Automatic ECO APIs

These APIs are for Automatic ECO

fix design: ECO command to fix the design in automatic ECO
fix logic: ECO command. Fix listed points
map_spare_cells: ECO command. Map all new created cells to spare cells

4.1.4.3 File 10 APIs

These APIs are for reading/writing files.

read def: Read DEF file

read design: Read verilog netlist files

read file: Read timing violation report file

read lef: Read LEF file

read library: Read standard library or verilog library files

restore session: Restore ECO session

save session: Save ECO session

write dcsh: ECO command. Write ECO result in Design Compiler dcsh script format
write perl: ECO command to write ECO result in Perl script

write soce: ECO command. Write ECO result in Cadence SOC Encounter script format
write spare file: ECO command. Write spare cells list to a file

write tcl: ECO command to write ECO result in Design Compiler tcl script format
write verilog: ECO command to write ECO result in Verilog netlist

4.1.4.4 Manual ECO APIs

These are APIs for Manual ECO.

buffer: ECO command. Buffer high fanout ECO nets

change gate: ECO command. Modify an instance in ECO

change net: ECO command. Change a existing net's driver

change pin: ECO command. Modify pin connection of instances by inserting gates, changing connection to other
signal

change port: ECO command. Change an output port's driver, or add gate after input port
del gate: ECO command. Delete gate

del net: ECO command. Delete net

del port: ECO command. Delete port

new gate: ECO command. Create new gate

new net: ECO command. Create a new net

new port: ECO command. Create a new port for the current top level module

Combining netlist browsing APIs, a short GOF script can do very efficient ECOs.
For example, to add isolation cells for all output ports of a module.

set top("module name");

my @out ports = get ports("-outpr

foreach my Sout (Qout ports) {
changefport($out, "AND2X2", "",

}

4.1.4.5 AI Agent enabled APIs

These APIs are for AI Agent

set_al remote server: Setup remove AI server

spec_to rtl: Spec to RTL generation by AI scoring method
ail debug noneqg: Debug non-equivalent point with AT

run nl: AI command, run natural language command

set_ai config: Config AI settings

4.1.5 APIs Detail usage

For detail of APIs visit Appendix A

4.2 String Handling In Script Mode

4.2.1 Single quote and double quote

Any string in GOF script for module/instance/wire/pin/port should be enclosed by single quote or double quote. When a Perl
variable is used, double quote should be used

4.2.2 Instance and net with backslash

Instance with backslash should be either put in single quote and with a space in the end.

change pin('\u_abc/u_def/state /RN', "1'b0");

Net name with backslash should keep the backslash and space. For example

DFFQ X4M \u_abc/u def/state reg[0] (.D(\u abc/u def/netl23), .Q(\u abc/u def/state[0]));

The net "\u_abc/u_def/net123 'should have backslash and space kept in API, for example:

© 2025 NanDigits Design Automation All Rights Reserved. Page 38

GOF User Manual

change net ("\u abc/u def/netl23 ", "INVX1", "", "-");

4.3 Run and debug GOF script

4.3.1 Command line

In Linux Shell, the script can be run by ‘-run' option.

gof -run run_example.pl

4.3.2 GOF Shell

If '-run' option is present in the command line, and 'exit' or 'gexit' is not in the script, or GOF meets error when executing the
script, GOF goes into interactive mode with GOF shell 'GOF >'.

GOF, Netlist Processing Script APIs, Interactive Mode
Run 'start gui' to launch GUI window

Run 'help' to list API calls

GOF' >

Individual command can be executed in GOF shell. The command can be in nested mode

GOF > set top(get ref("u rxbuf"))

4.3.3 Run in GUI mode

GOF scripts can be run in GUI window. In GofViewer, click Menu Commands->'Launch GOF Script Interface' to launch GOF GUI
window.

Type ‘help'in the shell entry for help information. Scripts can be run by '-run' command in the shell entry

¥ GofCall, Netlist Processing APIs i =10] x|
1

Fie Help

write verilog: ECO command. Write out ECOed netlist to a file Al
write tcl: ECO command. Write out ECO result in Design Compiler tcl script format
write cdn: ECO command. Write out ECO result in Cadence S0C Encounter script format
write dcsh: ECO command. Write out ECO result in Design Compiler dcsh script format
sch: Launch schematic to wverify ECOD

run: Run GofCall script

read design: Read design

read library: Read stardard library

read file: Read timing wiolation report file

read def: Read DEF lile

fix _setup: Fix setup

fix hold: Fix hold

Type 'help individual API' to list detail help information for the specified API J
-
il i
GOF> |run ecold1s.p)
Close | | Internuot

Figure 34: GofCall window
4.3.4 Fast schematic launch

In GOF shell, GUI windows can be launched by 'start_gui' or 'sch’ commands.
'start_gui' launches netlist view window first and user can bring up schematic window from netlist view window.

'sch' command only launches schematic window, and it doesn't enable netlist view window. So it has fast turnaround in GUI
interactive debug.

For example,
After the following command is done,

nn
’

change pin("u top/u core/u regmod/state reg/D", "XOR2X2",

Run 'sch'in 'GOF >'
GOF > sch("u_top/u core/u regmod/state reg")

The instance is loaded into a schematic and user can click on the instance's pins to trace fanin/fanout on the schematic to see
if the ECO is done as expected.

4.3.5 Break points for debug

'sch' fast schematic launch command can be used as break points for debug. For example, 'sch' commands are inserted in GOF
script, when the tool runs to the point, a schematic is launched.

setup_eco("ec 321") ;

set log file("t ¢ 3821.1og");

read library("art.m.simple.lib");

read design("-imp", "./cdir/imp name.v");
change pin (" S
sch("state rec

sel mode)");

On the schematic, user can use mouse-middle-button clicking on the pin 'D' to see if the ECO is done as expected.

© 2025 NanDigits Design Automation All Rights Reserved. Page 39

GOF User Manual

File Schematic ECO Commands Options Help

EHE ® Glios .]Tlﬁ ¥ ECO
2000 9100 5200 9300 5400 3
T 1 rrr I T rrrrrrrT I T 11T T1rrrrrT | L L L L L | L L L L | L L L L L L

Sanity 73 insto

n3i20 A
sel mode s0
e sanity75 wirel
next state[7] B T
50

state reg 0
S 3657
—
sanity’ wi‘meﬂn I_state[til]
reset BH
DFFROX2

Al] ol

Taop: zanity75_instl, MeZ2d sanie?5_inst0] AR320), Blnest_state[7]). S0[zel_mode), " sanity 75 wire0]); |

Figure 35: Launch schematic at break point
Note: 'ECO' check-button is enabled automatically, since there is ECO having been done.

To compare with the logic before ECO, launch a new schematic by menu Schematic->'New Schematic'. On the new schematic,
press 'ctrl-g' or by menu Schematic->'Load Gate' to load in the flop under ECO.

File Schematic ECO Commands Options Help

FWS QQfo Yo [\ Tew |

o000 9100 9200 9300 9400 :?:i
IIIIIIIIIIIIIIIIIIIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIII
state reg 0
U532 napaered T
n3gdr —— R
T % n320 n320{ dstate[0]
—— B g
reset RH
CLEHAND2X? —
DFFROXZ

K il]|

Top: U532, CLENAND 242 US32[.An334)..BIn385). Y [H320]); |

Figure 36: Launch schematic before ECO

Note: 'ECO' check-button is un-checked.

4.3.6 Counter-example back-annotated to schematic

In GOF shell 'GOF > sch the_non_equivalent_point -both’, so that both instances/ports in the Implementation and Reference
Netlists are loaded into a schematic. Select both of them, right the mouse and select 'LEC Debug the_non_equivalent_point'.
After the run finishes, use mouse middle button to expand the schematic, and the counter-example values are back-annotated

on the schematic.

) ; outcip,
Implementation Netlist ~ T750]
outolcr copy Selectedto

C LEC Debug Flop ‘reg333’ vs 'reg3dd’ |

SDFFQ_X(

Find Gates on Schematic
Find Nets on Schematic

Delete

Place & Route

Reference Netlist

Figure 37: Debug non-equivalence by counter-example back-annotated

Two corresponding flops, two corresponding output ports, and any two nets in the Reference Netlist and the Implementation
Netlist can be compared in debug mode. In cases where the outcome is non-equivalent, the counterexample will be presented

to the gate pins on the schematic.

© 2025 NanDigits Design Automation All Rights Reserved. Page 40

GOF User Manual

out
outl|
synouta IMP
/ NAN

The non-equivalence

is caused by these two

signals, use mouse

middle button to trace

the drivers D%Irépmod .uldd Cmgmod .reg333

—— \) clk..
out2 . ‘1"} out-:::.______ outel)! i
ROt T 1'b0* REF
NAND3_XOP5M outo3|s
1
SDFFQ_XO0P5M

Figure 38: Counter-example back-annotated on the schematic
4.4 Typical Manual ECO operations
4.4.1 Insert gate to port
Both input port and output port have the same operation
4.4.1.1 Insert an invert to input port
Insert to input port 'in enable'
change port("in enable", "INVX1", "inst name", "-"); # 'inst name' can be empty

4.4.1.2 Insert to output port

Insert AND2X1 to output port 'out enable', one pin connects to the original driver,
the other pin is driven by 'scan mode'
change port ("out enable", "ANDZ2X1", "", "scan mode,-");

4.4.1.3 Insert inverts to multiple ports

Find all ports matching string "abcde" and insert invert to each port
my @ports = get ports ("*abcde*");
foreach my S$port (@ports) {
change_port($port, "INVX1™, "', "-");
}

4.4.2 Insert gate to register instance pin
4.4.2.1 Insert invert to flop data pin

Insert an invert to 'D' pin of flop 'abc reg'
change pin("abc reg/D", "INVX1", "", "-=-");

4.4.2.2 Insert invert to flop output pin

Insert an invert to 'Q' pin of flop 'abc_reg'
change_pin(”abc reg/Q", "INVX1"™, "", "-");

4.4.2.3 Insert MUX to data pin of multiple flops

Find all flops matching string "cnt reg" and insert MUX to 'D' pin of each flop,
so that each flop is preset to 'preset val' when 'preset enable' is high
my @flops = get cells("*cnt reg*");
foreach my $flop (Q@flops) {
change_pin "Sflop/D", "MUX2xX2", "", ".A(-), .B(preset val),.S(preset enable)");
}

4.4.3 Change flops to other type
4.4.3.1 Change non-reset flop type to resettable flop

Find all flops matching string "cnt reg" and change each flop to resettable flop
my @flops = get cells("*cnt reg*");
foreach my $flop (@flops) {

change gate ($flop, "DFFRQX2", ".RD(reset n)");

}

4.4.4 Insert gate to hierarchical instance pin
4.4.4.1 Insert inverts to hierarchical instance pins

Find all instances matching "tx mac" in module "abc mod" and insert invert to 'loop en' pin
set_top ("abc mod");
my @insts = get instances ("*tx mac*");
foreach my $inst (Q@insts) {
change pin("S$inst/loop en", "INVX1", "", "-");

}
4.4.4.2 Insert AND to hierarchical instance pins

Find all instances matching "tx mac" in module "abc mod" and
AND all output pins with "power on" signal.
set_top ("abc mod") ;
my @insts = get_ instances("*tx mac*");
foreach my $inst (Q@insts) {
my @pins = get pins("-output", S$inst);
foreach my $pin (@pins) {
my Snet = get net of ($pin); # Only add AND to those out pins driving nets
if ($net) {
change pin($pin, "AND2X2", "", ".A
}

wer on)");

5 GOF LEC: Logic Equivalence Checking Tool

© 2025 NanDigits Design Automation All Rights Reserved. Page 41

GOF User Manual

5.1 GOF LEC Overview

The GOF platform features a built-in powerful logic equivalence checker tool called GOF LEC. While not mandatory, the tool can
benefit from SVF files in certain cases. It is strongly advised to utilize SVF files if they are obtainable, especially for designs
with multibit flop. The two designs being compared can either be in RTL or Netlist format, with RTL supporting
SystemVerilog2017. The read design method differs depending on whether RTL or Netlist is being supported.

Reference ‘ Library Implementation
RTL/Netlist Files RTL/Netlist

GOF Logic Equivalence Checking

Equivalence

Report

Figure 39: GOF LEC Engine
5.1.1 Netlist to Netlist LEC

The following is the example script for Netlist to Netlist LEC:

LEC script, run net2net lec.pl
use strict;
read library("art.5nm.1ib"); # Read in standard library
read svf('-ref', f.txt"); # Optional, must be loaded before read design, must be in text format
read svf('-imp', '~ f.txt'); # Optional, must be loaded before read design, must be in text format
read design('-ref y n.v'); # Read in the Reference Netlist, prelayout netlist
read design('-imp 'AT2023 top pr.v'); # Read in the Implementation Netlist, postlayout netlist
set top("AI2021 top"); # Set the top module
set ignore output ("s 1 out*");
set pin constant (" 1able", 0);
set pin constant (" ~mode", 0);
my Snon equal = run lec; # Run logic equivalence check on the two netlists
if ($non_equal) {
gprint ("LEC failed with $non equal non-equivalent points");
telse(
gprint ("LEC
}

da") ;

5.1.2 RTL to Netlist LEC

The following is the example script for RTL to Netlist LEC:

LEC script, run rtl2net lec.pl

use strict;

read_library(”a:f.FLn.l;b”); # Read in standard library
set_inc dirs("-ref", "inc dir path/include");

set define("-ref", "NO v,o1);

my @rtl files ("cpu_ ¢ v", "mem ctrl.sv", "display sys.sv", "chip top.sv");

read _rtl("-ref", Qrtl files); # Read in the Reference RTL files

read_svf('-imp', 'chip top.svf.txt'); # Optional, must be loaded before read design, must be in text format
read _design('-imp', 'chip to '); # Read in the Synthesis Netlist

set top ("CHIP TOP"); # Set the top module
set_ignore output (s
set_pin_constant ("
set_pin_constant ("sc¢
elab rtl(); # RTL processing
my $non_equal = run lec; # Run logic equivalence checking on RTL vs Netlist
if (Snon_equal) {

gprint ("LEC failed with $non equal non-equivalent points");
telse{

gprint ("LEC p
}

6 GOF Debug: Netlist Debug and Schematic

GOF Debug has been spun off into an independent tool, offering users the flexibility to purchase licenses on a daily basis. For
more information on licensing options, please refer to the Purchase page.

GOF Debug encompasses a comprehensive debugging process, including:
e Script mode debugging (described in previous chapters)
e Incremental Schematic feature
e Logic Non-equivalence debug

This chapter will delve into the details of GUI operation, providing a thorough understanding of its features and applications.

6.1 GofViewer

When GOF is run without '-run' or '-shell' option, it goes into GUI mode.
gof -lib t65nm.lib -lib io.liblong_port.v

GofViewer is the first window after GOF starts up GUI interface.

© 2025 NanDigits Design Automation All Rights Reserved. Page 42

/purchase_gofdebug.php

GOF User Manual

Title with information of the netlist
name , top level module name and ID

¥ Gofviewer [Filex /v.gz[long_port.v] [Topdong_port] ID dema

Fle Find Commands Options

—— w28 7]
Log_File A

B Top{long_port)

Fast access icons

1=k
Help

module long_

F—7Z = = =
*":w,./ -7{@ick on fine 19 in long_port, line 691303 In file .iv.gzflony_port.v) \
l—Infomat:i.nn Bar

Hierarchy list window

Hetlist text window

Figure 40: GofViewer Window

6.1.1 Log Window

If there errors or warnings in loading the database, Log Window pops up

r T ~
% Log window =N X
File Options
GOF 3.102.007 starts @ Mon Jun 3 13:24:50 2013 o

Command Line: gof -run =zanityl545.pl

Current Time: Mon Jun 3 13:24:50 2013

Executing run("sanityl1545.pl"):

Running perl script sanityli45.pl...

Executing command stream: # FUNC: test spare gates...

undo eco; All previcus ECO operations have heen discarded

Set log file name 't =anityl343.log’

Loading library file ./../lib/artl8/typical.lib

Reading Verilog Library File ./../net/mtdat/vlib/analog module.wlib ...

Reading Verilog Library File ./../net/mtdat/vlib/mwacro cells.vlib ...

WARNTNG! (W-086) Include file 'mydefine.v' does not exist in ./../net/mtdat/vlib/macro ¢

Reading Implementation Design File ./../net/imp sanity multi.v...

Loading ./../lef/artl8 smallpad.lef...

Loading ./../def/sanity multi.def...

[|[**kkkkkkkkkkkkkkx***DEF armotation resulbrxskxrxsisrkrxrrkrrhrokrnnn =
oE

- = .

Figure 41: Log Window

6.1.2 File Menu

6.1.2.1 Load Design

Users can input netlist files and design files through the Load Design command.

6.1.2.2 Reload Design

If any netlist file or design file has been updated during GOF session, this command can be used to reload the design.
6.1.2.3 Open Other Netlist

This command loads another netlist file to create a new hierarchical tree. The hierarchy tree is listed in the hierarchy list
window. The command is useful when users want to draw circuits from different netlist file on the same schematic which is
good for logic comparison in netlist debug scenario such as LEC failures analysis.

6.1.2.4 Open Log Window

The command opens log file in a text window.

6.1.2.5 Exit

Exit command.

6.1.3 Find Menu

6.1.3.1 Search

This command searches for the matching string in the netlist text window.

6.1.3.2 Goto Line Number

GOF loads only one module in the netlist text window when the netlist file is hierarchical with multiple modules. The
1<::i(|Jerr.1mand loads the corresponding module into the text window and highlight the line with the specific number in the netlist

6.1.3.3 Report Area

This command reports the design area. The command requires standard library files to be loaded which include leaf cell area
information.

6.1.3.4 Report Leakage

This command reports the leakage power in the design. Same as the Report Area command it requires standard libraries.
6.1.3.5 Report Leaf Cells

This command reports the leaf cell type and numbers in the design.

6.1.3.6 Report Submodules

This command reports the hierarchical sub-modules in the design.

6.1.3.7 Statistic of Current Design

This command reports the statistic of the current design. It pops up an option window for interactivity from users.

6.1.3.8 List Library

© 2025 NanDigits Design Automation All Rights Reserved. Page 43

GOF User Manual

The command lists the libraries and leaf cells in each library.
6.1.3.9 List Context for Leaf Cell

This command pops up an entry window for users to input leaf cell name string, wild card can be accepted. All leaf cells
matching the string is listed. If there is only one cell matched, the detail property is listed.

6.1.4 Commands Menu
6.1.4.1 Launch GofTrace Schematic

This command launches GofTrace Schematic, if any instance or net string is highlighted in the netlist window, the instance or
the driver of the net is drawn on the schematic. Otherwise, the schematic is empty.

6.1.4.2 Launch GofTrace with Gate

This command pops up an entry window for users to input a string to load a specificinstance. For example, ‘u_abc/U123". Click
‘OK’ button on the pop window, GofTrace Schematic is launched.

6.1.4.3 Launch Layout Viewer

This command launches Layout Viewer window, if any instance or net string is highlighted in the netlist window, the instance
or the driver of the net is highlighted on the Layout Viewer window. The command requires that physical files to be loaded.
Both def and lef files should be loaded before launching Layout Viewer, otherwise a warning window pops up for the missing
physical files.

6.1.4.4 Launch GofCall Script Interface

This command launches GofCall window to run scripts or other interactive command.

6.1.4.5 Spare Cells

This command group processes Spare cells in metal ECO. Warning! GUI metal ECO is used for visually checking the possibility
of metal ECO. The script mode metal ECO is recommended.

e Create Spare Cells File

This command extracts spare cells from netlist file. A pop window appears for spare gates pattern. The default is
‘spare_*/*'".

I Spare Cell Pattern Iﬁ

Spare Cell Pattern |spare_“a”|

M Canicel

Figure 42: Spare Cell Pattern

Click 'OK' to extract spare instances from the netlist, and a pop text window appears to list all spare gate instances. Save the
list to a spare list file for later usage.

% Spare cells P Ty ——— I — l u_l—]':' G
Options

Find Ctrl-f list o
INVE4 spr gated Top(mt_core) .spare mod 15 (spare mod 15)
2X2 spr gatell Top(mt core).spare mod 15 (spare mod 15)
Close Cirl-x ELD spr gatel Top(mt core).spare mod 15(spare mod 13)

INVKE spr gatef Top(mt_core) .spare mod 15 (spare mod 15)

350.6 16.38 INVK1 spr gatel Top(mt core).spare mod 15(spare mod 15)

302.4 254.52 INVX]1 =pr gatel Top(mt core).spare mod 15(spare wod 15)

94.5 727.02 NOR2X2? spr gatel? Top(mt core).spare mod 15(spare mod 13)

283.5 18.9 DFFRHQ¥1 DFFRHOX1 spr gatelS Top(mt core) .spare mod 15(spare mod 1

12.6 441 THVX4 spr gate3 Top(mt core).spare mod 15(spare wod 15)

554.4 219.24 THNVXB spr gate7 Top(mt core).spare mod 15(spare wod 15)

[459.9 674.1 NOR2X2 spr gatel3 Top(mt core).spare mod 15(spare mod 13)

| 573.3 371.7 MHOX]1 s=pr gateld Top(mt core).spare mod 15(spare wod 15)

] 170.1 796.32 INVEB spr gateé Top(mt core).spare mod 15(spare wod 15)

|| 693 23.94 TNVH4 =pr gated Top(mt core).spare mod 13 (spare mod 15)

604.3 563.74 NAND2XZ? spr gatell Top(mt core).spare wod 15(spare mod 13)

245.7 5395.5 INVH4 =pr gated Top(mt core).spare mod 8(spare mod §)

352.8 42.84 NANDIXD zpr gatell Top(mt core).spare mod B(spare mod 8)

] 3B4.3 786.24 TIELO spr gatel Top(mt core).spare mod B(spare mod 8) =
| ﬂj

Enn

«

Figure 43: Spare cell list

R i TR IR e i e I WO e Pl e e . I i i o 230 IR

e Load Spare Cells File

This command loads in the spare cells file created by the above command.

6.1.5 Options Menu
6.1.5.1 Hierarchy Window Font
Check GofViewer for the hierarchy list window position
e Increase Font Size
Increase font size in the hierarchy list window.
e Decrease Font Size
Decrease font size in the hierarchy list window.
6.1.5.2 Netlist Window Font
Netlist window locates in the right side of GofViewer window. Check GofViewer for the netlist text window position
e Increase Font Size
Increase the font size in netlist window.
e Decrease Font Size
Decrease font size in netlist window.
6.1.5.3 Dump Waveform Restore File
An option window pops up for users to choose which dump restore file to be saved. It’s useful for netlist simulation debug.
When one format box is checked in pop menu, ‘Write Waveform Restore File’ item is presented on the top when one net is
selected in the netlist window.

6.1.5.4 Setup

Integration of various setup information.

6.1.6 Help Menu

© 2025 NanDigits Design Automation All Rights Reserved. Page 44

GOF User Manual

6.1.6.1 General

General help information.

6.1.6.2 About

About Gates On the Fly.

6.1.6.3 nandigits.co/gof_manual.php
Visit the website for this manual.
6.1.6.4 Read Ethernet Mac Address

Read out MAC address. When users decide to purchase licenses or ask for evaluation licenses, MAC address is required to
generate GOF licenses.

6.1.7 Keyboard Shortcuts

6.1.7.1 Access Menu
Press key ‘Alt’ and underlined letter in menu.
6.1.7.2 Functions access

Ctrl-a: Select all text lines

Ctrl-c: Copy the marked (highlighted) string
Ctrl-v: Paste the content in clipboard

Ctrl-d: Trace driver of the marked net
Ctrl-f : Search function

Ctrl-g: Load instance to schematic

Ctrl-s: Emacs style search forward

Ctrl-r: Emacs style search backward

Ctrl-w: Write to waveform dump restore file
Ctrl-x: Exit the current window

6.1.8 Selection Status

Click mouse-left-button on netlist text window, the object which can be net, instance or module under the cursor is
highlighted. Netlist window pop menu has different content according to the selection status. Pressing keys Ctrl-a can have all
content in the netlist window selected. Press mouse-left-button and don't release, move mouse down to select multiple lines.

6.1.9 Netlist Window Pop Menu

Click mouse-right-button and release, a pop menu appears under the cursor. The menu content varies with the selection
status in the netlist window.

6.1.9.1 Search
Search for a string in the netlist window. Keyboard shortcut is Ctrl-f.
6.1.9.2 Copy Selected to
Copy the selected object (net or instance) to new schematic window or existing schematic window.
e Schematic New
Copy the selected object to a new schematic.
e Schematic #number
Copy the selected object to an existing schematic window.
6.1.9.3 Find Equal Nets of the selected Reference Net
The command only shows up when the selected net is in Top_ref Reference Netlist. To keep all wires in Reference RTL,
'preserve_modules' should be used before bringing up the GUI window. The following script can be used to start the GUI
window:
The following script is to preserve RTL wires in 'Find Equal Nets':
GOF script, preserve RTL wires and start up GUI
use strict;
read library("ar

set define ("
set define ("

b");# Read in standard library

IM") ;

set inc dirs("/pro ject 00 1clude")

read rtl('-ref', "

read svf('-imp', txt'); # Optional, must be loaded before read design, must be in text format
read design("-imp "implementation.gv");# Read in Implementation Netlist

set top("topmod");# Set the top module

preserve modules("-all"); # Preserve wires in all modules during elaboration and compile

elaborate () ;
start gui;

6.1.9.4 Driver of the selected net

Trace to the driver of the selected net. The netlist window shows the instance that drives the net and mark the driven net.
6.1.9.5 List Connectivity of the selected net

Pop up a window to list the connectivity of the selected net.

6.1.9.6 List Fanin EndPoints

Pop up a window to list the fanin endpoints including flops and input ports that drive the selected net.

6.1.9.7 List Fanout EndPoints

Pop up a window to list the fanout endpoints including flops and output ports that are driven by the selected net.

6.1.9.8 Parent Module

Go to the definition location of the parent module calling the current module. It's only active in sub-modules, not in root top
level module.

6.1.9.9 List Context

List the context of the selected object which can be net, instance or module.

6.1.10 Hierarchy Window Pop Menu

Click mouse-right-button and release, a pop menu appears under the cursor. The menu content varies with the selection
status in the hierarchy window.

6.1.10.1 Show Definition

Open the module content and display it in the netlist window.
6.1.10.2 Show Calling

Open the parent module and highlight the instantiation location.

6.1.10.3 Report Area of the selected design

© 2025 NanDigits Design Automation All Rights Reserved. Page 45

GOF User Manual

See Report Area

6.1.10.4 Report Leakage of the selected design
See Report Leakage

6.1.10.5 Report Leaf Cells of the selected design
See Report Leaf Cells

6.1.10.6 Report Submodules of the selected design
See Report Submodules

6.1.10.7 Statistic of the selected design

See Statistic of Current Design

6.1.10.8 Edit Module of the selected design

Edit the module by using edit tool defined in menu Options->Setup->Misc->Edit tool’. It asks for a directory for storing
temporary files.

6.1.10.9 Save Module of the selected design
After editing, the edited modules can be saved into a file.

6.1.10.10 Goto Line Number

6.2 GofTrace

GofTrace is an incremental schematic engine. Users control how to expand the schematic by clicking the input/output pins of
gates with mouse-middle-button. Users can adjust the positions of the gates on the schematic any time by mouse-left-button.

|cm:smv mode to trace schematic,
Or edit line mode

[Switch to GofECo |

ave fopen/printer Undo

GOF
Eaf GO aCe emati: 0, Zoom

File Schematc ECO Qommands Cpbons

EEa Q] 96)(x m)[o)

=10l x|

L

INPUT qciflt mode U343

:Iﬁ':“mode n53 n250

start_execute &

i e '

Status Bar L Press Mouse-Middle-Button on pins to
expand the schematic

Figure 44: GofTrace Window

6.2.1 Mouse buttons usage
6.2.1.1 Mouse Left Button

Mouse left button is used to select object. Click on any object, it is highlighted to indicated being selected. Press 'ctrl' key and
click on objects to select multiple objects. Press mouse left button and move the mouse to select multiple objects at one time.

6.2.1.2 Mouse Middle Button

Mouse middle button is used to trace the schematic. Click on input/output pins to expand the schematic. It used to do drag-
drop function as well. In ECO mode, it's used to connect floating input pin to existing nets.

6.2.1.3 Mouse Right Button

Mouse right button is to popup menu.

6.2.2 File Menu
6.2.2.1 Save

Save the schematic to a file for future usage. The saved file has extension *.st” which can only be used by GOF in ‘Open’
schematic command shown below.

6.2.2.2 Open
Open schematic stored by Save command above.
6.2.2.3 Print

Print schematic to a printer or file. Printer Page Setup window pops up for the print scope setup. In Windows platform, users
can select one of the printers configured in the system. In Linux platform, make sure ‘lpr' command works.

6.2.2.4 Exit

Exit GofTrace window.

6.2.3 Schematic Menu

6.2.3.1 New Schematic

This command launches a new GofTrace schematic window.

6.2.3.2 List Gate

This command pops up a window for user to enter a string into the entry to find the matching instances. It accepts wildcards
in both hierarchy name and instance name. For example, there are four hierarchical instances u_lane0O, u_lanel, u_lane_2,
u_lane3, each instance has spare modules with instance naming ‘u_spare*’, and in each spare module AND gate has instance
naming **AND*’. In order to find all spare AND gates, one can enter a string ‘u_lane*/u_spare*/*AND*".

6.2.3.3 Load Gate

This command pops up a window for user to enter a string into the entry to load the matching instances onto the schematic.

© 2025 NanDigits Design Automation All Rights Reserved. Page 46

GOF User Manual

Same as 'List Gate’ command above, it accepts wildcards. However, the total number of gates drown on the schematic should
not exceed the threshold defined in Menu Options->Setup->Misc->'Gates number limit’".

6.2.3.4 Load Gate Driving Net

This command pops up a window for user to enter a string into the entry as the net name. The tool finds the driver of the net
and draw the driver on the schematic.

6.2.3.5 List Selected Instances

Use mouse-left-button to select a bunch of objects (Instances or wires) on the schematic. Click this command to list all the
selected instances’ full hierarchical names in a pop window.

6.2.3.6 List Selected Wires

Use mouse-left-button to select a bunch of objects (Instances or wires) on the schematic. Click this command to list all the
selected wires’ full hierarchical names in a pop window.

6.2.3.7 List Selected Modules

Use mouse-left-button to select a bunch of objects (Instances or wires) on the schematic. Click this command to list all the
selected gates’ module name in a pop window.

6.2.3.8 List Selected Instances Definitions

Use mouse-left-button to select a bunch of objects (Instances or wires) on the schematic. Click this command to list all the
selected instances’ full definitions in a pop window.

6.2.3.9 List Selected Gates Types

Use mouse-left-button to select a bunch of objects (Instances or wires) on the schematic. Click this command to list logic type
numbers of all the selected gates in pop window. For example, ‘AND’ gate has type ‘and’, inverter has type ‘not’. The pop
window can have information such as “Type ‘not’ has 11”.

6.2.3.10 Zoom In

This command can zoom in the schematic view. The maximum zoom in ratio is 100%. Keyboard shortcut for this command is
key ‘+".

6.2.3.11 Zoom Out

This command can zoom out the schematic view. The minimum zoom out ratio is 13%. Key board shortcut for this command is
key *-'.

6.2.3.12 Zoom to
This command can directly select zoom ratio, the valid values are 100%, 67%, 44%, 30%, 20% and 13%.
6.2.3.13 Find Gates on Schematic

This command pops up a window for users to enter a string to find the matching instances on the schematic. It matches
portion of the full name. For example, 'U' matches 'U0’, 'U1"and 'U222".

6.2.3.14 Find Nets on Schematic

This command pops up a window for users to enter a string to find the matching wires on the schematic. It matches portion of
the full name. For example, 'Net0’ matches 'Net0’, 'Net011"and 'Net023".

6.2.3.15 Undo Schematic Operations
This command is to undo schematic operations. Keyboard shortcut is Ctrl-z.
6.2.3.16 Place and Route
This command group is to automatically place the gates on the schematic and automatically route the wires.
e Auto Place and Route
This command is to do both placement and routing automatically.
e Auto Place
This command is to do automatic placement only.
e Auto Route
This command is to do automatic routing only.
e Reset Route
This command is to reset all existing routes, all routed wires become straight.
6.2.3.17 Create PS/PDF File

This command is to create Postscript file or PDF file for the current view of the schematic. In Windows platform, only Postscript
is support. On Linux platform both Postscript and PDF are supported.

6.2.4 Commands Menu
6.2.4.1 View Gates in Layout

This command launches layout viewer window. If some gates and wires are selected on the schematic, they are highlighted on
the layout viewer. It requires DEF and LEF physical design files to be loaded.

6.2.4.2 Load Layout Files
This command is to load layout physical design files. They include DEF and LEF files. The command can be run several times to
load the physical design file one by one. DEF and LEF files can be loaded by command line with -def and -lef options. Or they
can be read in by API 'read_def' and 'read_lef' in GofCall script.
6.2.4.3 Launch GofCall Script Interface
This command launches GofCall Script Interface window.
6.2.4.4 Spare Cells
This command group handles spare cells in automatic metal ECO flow.

e Create Spare Cells File

This command creates spare cells file.
e Load Spare Cells File

This command loads the spare cells file created by the command above.
6.2.5 Options Menu
6.2.5.1 Increase Font Size
This command increases the font size on the schematic.
6.2.5.2 Decrease Font Size
This command decreases the font size on the schematic.

6.2.5.3 Show Port

© 2025 NanDigits Design Automation All Rights Reserved. Page 47

GOF User Manual

This option makes port name visible.
6.2.5.4 Show Wire

This option makes wire name visible.
6.2.5.5 Show Title

This option makes gate title visible.
6.2.5.6 Show Type

This option makes gate type visible.
6.2.5.7 Show Connections

This option makes wires visible.
6.2.5.8 Show Comment

This option makes comments visible.
6.2.5.9 Dump Waveform Restore File

This command pops up a window to setup simulation waveform restore file. Four waveform restore file formats are supported.

SimVision Restore File
ModelSim Restore File
Verdi Restore File

L]
L]
L]
e GtkWave Restore file

If one or more of the formats are selected, GofViewer and GofTrace pop menus have 'Write Selected Nets to the Waveform
Restore File’ as the first item, when a net is selected.

6.2.5.10 Save String to Clipboard

This option enables saving string to clipboard when a wire or instance name is clicked by mouse-left-button.

6.2.5.11 Cursor Mode

This is normal mode of the schematic tracing.

6.2.5.12 Line Edit Mode

This mode sets cursor in editing wire connections mode. Press mouse-left-button on the straight wire connection and move,
the line is pulled by the cursor until the mouse button is released.

6.2.5.13 Setup

The command pops up configuration window for the tool setup.

6.2.6 Help Menu

6.2.6.1 General

General help information.

6.2.6.2 About

About Gates On the Fly.

6.2.6.3 nandigits.co/gof_manual.php

Visit the website for the manual.

6.2.7 Keyboard Shortcuts

6.2.7.1 Access Menu

Press key 'Alt’ and underlined letter in menu.
6.2.7.2 Functions access

Ctrl-a: Select every object on the schematic

Ctrl-c: Copy the selected objects

Ctrl-v: Paste the content in clipboard copied by Ctrl-c

Ctrl-g: Load instance to schematic

Ctrl-w: Write to waveform dump restore file

Ctrl-x: Exit the current window

Ctrl-digit: Save the selection location as the digit indication, the schematic view moves the current saved location when the digit is
pressed later

6.2.8 Selection Status

Click mouse-left-button on the schematic window, the object which can be net, instance under the cursor is highlighted.
GofTrace pop menu has different content according to the selection status. Pressing keys Ctrl-a can have all selected on the
schematic. Press mouse-left-button on empty space, and don't release, move mouse down to select multiple objects.

6.2.9 GofTrace Pop Menu

Click mouse-right-button on GofTrace schematic, a menu pops up. The content of the menu varies as the selection status on
the schematic.

6.2.9.1 Driver Until Non Buffer

Trace driver of an input pin. If the driver is a buffer or invert, the tracing will continue on the input pin of the buffer or invert,
until the driver is non-buffer/invert. The feature can be used to trace the clock tree cells of a flop's clock input.

6.2.9.2 Drivers of Logic Cone

Logic Cone is the logic cluster between flops and ports, as shown in the following figure. Users should select the output flop or
its pins to do logic cone extraction.

Logic Cone with Only
Combinational Logic

. N =

p—y
;I—’ e — __/ Ouput flops

Input flops
and ports

Figure 45: Logic Cone

e On the Schematic

© 2025 NanDigits Design Automation All Rights Reserved. Page 48

GOF User Manual

Draw the whole logic cone on the schematic.
e In Text Mode
Display the whole logic cone in a pop up text window.
6.2.9.3 Copy Selected to
This command group does interactions between GofTrace windows and LayoutViewer windows.
e Schematic New
Copy the selected items to a new schematic.
e Schematic Number#
Copy the selected items to an existing schematic identified by ID Number.
e Layout New

Copy the selected items to a new launched LayoutViewer window. The selected circuit is marked on the LayoutViewer
window.

e Layout Number#
Copy the selected items to an existing LayoutViewer window indentified by ID Number.
6.2.9.4 Trace Scan Chain

When the selected item is a flop or latch, the command item appears in the pop menu. The command is to trace the scan chain
starting from this register's scan input pin or data pin. The scan chain list will be displayed on a popup window.

6.2.9.5 Nets Equivalence Check
The command needs Reference Netlist loaded.
e Reference Netlist can be loaded by '-ref' option in command line. For example,
gof -1lib tsmc.lib implementation.v -ref reference.v
o Reference Netlist can be loaded by 'read_design' with '-ref' switch in GofCall script. For example,

read_design("-ref", "reference.v");

Use mouse-left-button to select on a pin in implementation netlist and press 'ctrl' key to click mouse-left-button on the other
pin in reference netlist. So that one pin in implementation netlist and the other comparing pin in reference netlist are selected
at the same time.

Click mouse-right-button to popup menu and select "Equivalence Check for 'neta' vs 'netb" command.

FEE Q QMU0 [k [I Ew

r counter 1{TIf

(=]

HAND4X1

setip Sode [: —ni223

u mt core.u rtc3.U753
u mt core.u T
- The0 =

u mt core.u rtc3i.U54

te3. Uinvd u mt core.u rtc3.year counter hh reg

r countar 1[3]], nS051 yea mclk B
- e 4 ngus ——
r_rtcla[3] I s GOF enetldinv nel2i, diear counter hh
GOF_enetld = Lf

Equivalence Check for ‘'nf12' vs ‘n612'
[;-“ uivalence Check for 'n612' vs 'n612' (Flatten)

Find Gates on Schematic
Find Mets on Schematic

IRVl GOF enetlé

u mt core.u rtc3.U427

7 P Place & Route L
=

ar_count&r B[3] néod . OAT271XL gt counter hh reg
IMVEL G0 E‘_enet.‘i inwv
u mt core.u rtc3.J887 ciear counter hh
year counteTr hh n793 \f—— e
e kg = & S 10 GOF enetl0
1 ML core.u ricy.Uro INVIL P enetl0iny | -
r_counter 1[0]p— u @t core.u_rtc3 DEFRHOX1
r_counter 1[3]}. % nsos I ;
- e ———— 4 5 7
r rtcoa(3] . o S22 R0 N
= GOF t1l4d
n917| o N84 81 i
gy setup mode =
HAND4X1 —_g;\-\ﬂ \
ni%3 |
Al ¢
.f — | F——
u mt cors.u OAT221XL
year counter hh
- _L
THVXL GOF enetl0inv
d
i1 | »] |

2items selected |

Figure 46: Nets Equivalence Check
When the check is done, a pop window shows if the nets are equivalent.
6.2.9.6 Find Equal Nets of the selected Net

The command only shows up when the selected netis in Top_ref Reference Netlist. To keep all wires in Reference RTL,
'preserve_modules' should be used before bringing up the GUI window. The following script can be used to start the GUI
window:

The following script is to preserve RTL wires in 'Find Equal Nets':

GOF script, preserve RTL wires and start up GUI

use strict;

read library("art.5nm.1ib");# Read in standard library

set define ("SYNTHESIS");

set_define ("NO_SIM");

set_inc dirs("/project/nd900/vlib/include", "/project/nd900/IPS/include");

read rtl('-ref', "refO.sv", "refl.sv", "ref2.sv");

read_svf('-imp', 'implementation.svf.txt'); # Optional, must be loaded before read design, must be in text format
read_design("-imp", "implementation.gv");# Read in Implementation Netlist
set_top("topmod");# Set the top module

preserve modules("-all"); # Preserve wires in all modules during elaboration and compile
elaborate () ;

start gqui;

6.2.9.7 Add Comments
This command adds comments entered by users on the schematic.
6.2.9.8 Find Gates on Schematic

This command pops up a window for users to enter a string to find the matching instances on the schematic. It matches
portion of the full name. For example, 'U' matches 'U0’, 'U1" and 'U222".

6.2.9.9 Find Nets on Schematic

This command pops up a window for users to enter a string to find the matching wires on the schematic. It matches portion of
the full name. For example, 'Net0’ matches 'Net0’, 'Net011’and 'Net023".

6.2.9.10 Place and Route
This command group is to automatically place the gates on the schematic and automatically route the wires.

e Auto Place and Route

© 2025 NanDigits Design Automation All Rights Reserved. Page 49

GOF User Manual

This command is to do both placement and routing automatically.
e Auto Place
This command is to do automatic placement only.
e Auto Route
This command is to do automatic routing only.
e Reset Route
This command is to reset all existing routes, all routed wires become straight.
6.2.9.11 Find selected in GofViewer
This command finds the selected instance back in GofViewer netlist window, and highlights the instance in the netlist window.
6.2.9.12 Edit Gate Display

This command pops up a window for users to add or change comments associated with the gate and change the color of the
gate.

6.2.9.13 List Logic for the Selected Leaf Cell
This command pops up a text window to list the logic of the selected leaf cell.
6.2.9.14 List Context for the Selected Leaf Cell

This command pops up a text window to list the library content of the selected leaf cell. The content includes the cell’s pin
definitions, area and timing.

6.2.9.15 List Definition for the Selected Instance
This command pops up a text window to list the instantiation of the selected instance.
6.2.9.16 Load Instance Similar to the Selected Instance

This command pops up an entry window with the current selected instance name pasted in the entry. So that user can do
simple change to load other similar naming style instance onto the schematic.

6.2.9.17 Equivalent Symbol

This command changes the selected gate symbol display to the equivalent symbol according to DeMorgan's Laws. For
example, NAND symbol is equivalent to Inputs Inverted OR symbol.

6.2.9.18 Delete

This command deletes the selected objects on the schematic. The object can be gates, wires and comments.

6.3 GUI GofECO

GofECO GUI uses the same window as GofTrace by enable ECO mode. The background color changes to light blue by default.
The color can be configured by Menu Setup->GofECO->Color->BackGround. The ECO operation icons appear on the tool bar.
GofECO uses the same menus GofTrace uses, besides the contents in ECO menu being activated.

Click Menu ECO->'Enable ECO' or Check ECO button
to enable ECO mode. GofTrace becomes GofECQO
] 1

T+ GofECO, Scllematic 0, Zoom 1.00:1, ECO na
File Schemagc [ECO| Commands Options|
e = I = Enable ECO ’

P Insert Gates L N

Replace Gates

Add Gates Yoo
Delete Selected Hem kb qclxmt‘h gclk
Upsize Drive Strength

Downsize Drive Strength /

Undo ECO Operations

1c
dlfl.:ﬂs Save ECO
H1 ECQ Preferences

n227},

EDFFXL

n clk=-=-=Top

kb gEltEl:b gcl)

Kl 2|] i

One net selected: kb_gck |

Figure 47: GofECO Window

6.3.1 ECO Menu
6.3.1.1 Enable ECO and ECO Preferences

This option enable ECO mode, GofTrace switches to GofECO. A pop up window appears for inputting ECO setups.

¥ GofECO Preferences [ﬂ]

ECO Mame: |eco_e>:am|:ule
ECO Header Camment{0ptional):

+|» eur 2o exampid

g o

Use Spares Only [Map Spare Gates
| Quffer Diztance: |SDD i
O]

Metal ECO related options

Figure 48: ECO Preferences

ECO Name should be unique, so that name confliction can be avoided

ECO Header Comment is optional, which appears at the beginning of ECO netlist file

Checkbuttons 'Use Spares Only' and 'Map Spare gates' and 'Buffer Distance' entry are for Metal Only ECO. Their usages are:

Use Spares Only' is to use spare type gates only, a spare gate list file must be loaded with this option enabled.

Map Spare Gates' is to let the tool mapping any type gates to either the spare type gates or the exact spare instances in the design.
Buffer Distance' entry is to tell the tool add buffers/repeaters when the connection distance is larger than the limit. Inputting a large
number can disable adding buffers. The corresponding script command is 'set_buffer_distance'.

© 2025 NanDigits Design Automation All Rights Reserved. Page 50

GOF User Manual

6.3.1.2 Insert Gates

This command inserts gates in the selected wires. It requires one or more wires being selected on the schematic, before
inserting gates. A 'Gate selection’ window pops up for users to select proper type of gates and gate number. When multiple
wires are selected and some wires have the same drivers, users can choose either one gate driving all shared wires or one
gate driving each wire. Users are asked to choose the pin connections in 'Specify pin connections’ window. The default pin
connections setup can be used and users can modify the connections later on the schematic. Read this PDF use case for more
detail.

gof insert buffers inverters.pdf

6.3.1.3 Replace Gates

This command replaces the selected gates with a different type of gates. It requires one or more gates being selected on the
schematic. If two or more than two gates are selected, they should have the same type. A 'Gate selection’ window pops up for
users to select proper type of gates to replace the selected ones. Users are asked to choose the pins connections in 'Specify
pin connections’ window. The default pin connections setup can be used and users can modify the connections later on the
schematic.

6.3.1.4 Add Gates

This command adds new ECO gates on the schematic. A 'Gate selection' window pops up for users to select proper type of
gate to add onto the schematic. The new ECO gates appear as output driving a new net and input floating. The hierarchy of
the gate is undefined. When users connect one of the input pins to another existing gate or connect other gate’s floating
input to the ECO gate’s output pin, the ECO gate gets the same hierarchy as the other gate. Read Add Connection for more
detail. Add LONnection

6.3.1.5 Delete Selected Items
This command deletes the selected items. Users would be warned for deleting multiply objects at the same time.
6.3.1.6 Upsize Drive Strength

This command upsizes the selected gate to a higher drive strength gate with the same type. If there is no higher drive
strength gate available, users would be warned with a pop up information window.

6.3.1.7 Downsize Drive Strength

This command downsizes the select gate to a lower drive strength gate with the same type. If there is no lower drive strength
gate available, users would be warned with a pop up information window.

6.3.1.8 Undo ECO Operations
This command undoes the previous ECO operation, until no more ECO operation is in the pipeline.
6.3.1.9 Add Connection

There is no operation button/icon for Add Connection operation. Adding connection can only be done from a floating input pin
to a output pin. User can press mouse-middle-button on a floating input pin, and don't release the mouse. Then move mouse
to the destination output pin of the instance that user would like the wire connected to, release the button to make the
connection to be created.

6.3.1.10 Save ECO

This command saves ECO result to a file. The supported file formats:

e Verilog netlist

e GofCall Perl Script

e SOC Encounter ECO script
e Tcl script for Synopsys

e DC script for Synopsys

6.3.2 Metal Only ECO

Metal ECO only touches metal layers. Gates On the Fly provides four Metal Only ECO modes by combinations of setting up the
options in ECO preference and loading DEF file.

6.3.2.1 Metal ECO, mode 1

User can add any type of gates and let the tool map to the spare type gates, Place and Route tool should map the spare type
gates to the exact spare gate instances.

The setup for this mode:
Spare gate list file should be created and loaded.
DEF file should NOT be loaded.

'Use Spares Only' is NOT checked.

L]
L]
L]
e 'Map Spare Gates' is checked.

6.3.2.2 Metal ECO, mode 2

User can add any type of gates and let the tool map to the exact physically existing spare gate instances.
The setup for this mode:

Spare gate list file should be created and loaded.

DEF file should be loaded.

'Use Spares Only' is NOT checked.

L]
L]
L]
e 'Map Spare Gates' is checked.

6.3.2.3 Metal ECO, mode 3

User can add only spare type gates and let the tool map to the exact spare gate instances.
The setup for this mode:

Spare gate list file should be created and loaded.

DEF file should be loaded.

'Use Spares Only' is checked.
'Map Spare Gates' is checked.

L]
L]
L]
L]

6.3.2.4 Metal ECO, mode 4

User can pick the exact spare gate instances, and connect and disconnect up the instances in ECO.

The setup for this mode:

Spare gate list file has no need to be created and loaded.

DEF file should be loaded.

'‘Use Spares Only'is NOT checked.

L]
L]
L]
e 'Map Spare Gates' is NOT checked.

6.4 LayoutViewer

LayoutViewer window displays partial physical placements. The circuit drawn on the schematic can be highlighted on
LayoutViewer. It has full interactivity with GofTrace. It requires physical design files including DEF and LEF files to be loaded.

© 2025 NanDigits Design Automation All Rights Reserved. Page 51

/use_cases/gof_insert_buffers_inverters.pdf

GOF User Manual

— Navigate bar ~ Cursor Coordination Selection Status
B oo e

Filer Commands Options Help

15.3435 um ===l = —aa——
Instance:u m . core.u rdwr .Ul encda
m Module:clock gated: St

K=

f

=D -
B T | T |

Searchi] saare'a"]:l-

—_ e | SIS S

[%

|
Search String Select Colors Circuit Marker Search Marker

Figure 49: LayoutViewer Window

6.4.1 File Menu
6.4.1.1 Capture in PDF

This command captures the current LayoutViewer display to PDF file. PDF is only supported in Linux Platform. In Windows
Platform, the captured display is saved in PostScript format.

6.4.1.2 Exit

Exit LayoutViewer.

6.4.2 Commands Menu

6.4.2.1 Clear Circuit Markers

Clear circuit markers which can be created by Drag-And-Drop from GofTrace Partial Schematic.
6.4.2.2 Clear Search Markers

Clear search markers which are those highlighted cells matching the searching string in search entry.
6.4.2.3 New Schematic

When cells or markers are selected in LayoutViewer, this command can launch a schematic with selected instances on it.

6.4.3 OptionsMenu

6.4.3.1 Show Grid

This option shows grid on LayoutViewer.

6.4.3.2 Show Instance

This option shows instance name on LayoutViewer. Zoom in scale should be large enough to show instance names.
6.4.3.3 Show Module

This option shows module name on LayoutViewer. Zoom in scale should be large enough to show module names.
6.4.3.4 Setup

LayoutViewer setups which include maximum search matching number and placement display zone area size.

6.4.4 Help Menu

6.4.4.1 Help on LayoutViewer

Visit NanDigits web site for Gates On the Fly manual section LayoutViewer.

6.4.5 LayoutViewer Pop Menu

Click mouse-right-button to pop up the menu.

6.4.5.1 Clear Circuit Markers

Clear circuit markers which can be created by Drag-And-Drop from GofTrace Partial Schematic .
6.4.5.2 Clear Searching Markers

This command clears searching markers which were activated by search function.

6.4.5.3 Copy Selected to

This command copies the selected gates to the following destination:
e Back to GofViewer

e A new Schematic
e An existing Schematic indentified by Number ID

6.4.6 Keyboard and mouse combination

6.4.6.1 Ctrl key to measure length

Press 'Ctrl' key and move mouse, the Cursor Coordination displays the length cursor moves in unit of 'um'.

6.4.6.2 Shift key to select multiple markers

Press 'Shift' key and press mouse-left-button, move mouse to draw a virtual rectangle. When release the mouse-left-button,

those markers in the virtual rectangle are all highlighted. Click mouse-right-button to pop menu, those selected instances can
be sent to other schematics or GofViewer the netlist view window by 'Copy Selected to' command.

6.4.7 Mouse operations

Mouse-middle-wheel: Roll up to zoom in and roll down to zoom out the LayoutViewer window.
Mouse-left-button: Click and release to select cells or markers. Press on LayoutViewer window to move it around.
Mouse-middle-button: Drag-And-Drop selected instances.

L]
L]
L]
e Mouse-right-button: Release to pop up menu.

© 2025 NanDigits Design Automation All Rights Reserved. Page 52

GOF User Manual

6.4.8 Select color buttons

Click color buttons in 'Select color:' bar to select the current color. 'Select Color:' string changes to the current selected color.
Any new Circuit Markers and Search Markers have this color.

6.4.9 Search function

Type search string in Search Entry to highlight the leaf instances matching the string on the LayoutViewer. The search string is
in 'path/instance' string format, separated by '/'. Wildcard can be used in path and instance names. The markers have the
color selected in 'Select color' bar.

The search string takes these options:

e -spare: When spare gate list is loaded by -sparelist option or get_spare_cells command.
e -type type-name: Only search those instances with specified type, 'nand' for example.

e -hier: Search all leaf instances under the specified hierarchy. For example, 'u_clk/* -hier'.

e -ref ref-name: Only search those instances with specified reference, 'NAND2X2' for example.

Examples:

'u rtc/*' : Search leaf instances in hierarchy 'u rtc'.
'* -hier -type nand': Search all leaf instances with 'nand' type in the design.
'u clk/* -hier': Search all leaf in hierarchy 'u clk' and its sub-hierarchies.

7 GOF AI: Agentic AI Platform

GOF Al is an agentic Al Platform that accelerates chip design. It revolutionizes interaction with EDA tools by enabling natural
language commands for complex netlist ECO operations. It also generates Verilog RTL code directly from specifications, using a
scoring system to help you select the most accurate version, and provides an automatic debugging method to quickly identify
the root cause of non-equivalent points.

7.1 AI-Powered Natural Language ECO: Revolutionizing Netlist
Modifications

In the intricate world of Electronic Design Automation (EDA), engineers often face a steep learning curve when mastering
complex tools. Remembering every API, its precise syntax, and the nuances of various options can be a significant hurdle,
even for experienced users returning after a break. This frequently leads to repetitive consultations of user manuals, diverting
valuable time from core design tasks.

The advent of cost-effective Large Language Models (LLMs) has opened a new paradigm: enabling users to interact with EDA
tools using plain, natural language. This revolutionary approach allows engineers to simply describe their desired
modifications, and the tool intelligently translates these instructions into executable commands.

GOF ECO leverages this capability to introduce AI-Powered Natural Language ECO operations. As illustrated in Figure 50,
users can now choose between the traditional, strict API syntax or a more intuitive natural language approach to perform
complex netlist modifications, such as inserting a specific inverter type to alter a pin's logic.

Fix netlist by strict syntax API call Fix netlist by Natural Language

change_pin(“stop/glue/ul/A”, “CLKINVX4”, “”, *.”) Insert type X4 invert into stop/glue/u0 pin A

stop.glue.sanitylé642_i_inst885
ci sanityl642_i _wire886

stop---stop.glue
ci ci CLKINVX4

stop.glue.ul

sanityl642_i_wire886
A zzdd
stop-—--stop.glue dtxout
dt xout dtxout B
NANDZ2X3

Figure 50: Using Natural Language to Modify Netlist Logic

Traditionally, implementing a change like inserting an X4 inverter into a specific pin requires adherence to a precise API syntax.
This often involves a detailed review of the user manual to locate the correct command and consulting the library file to
identify the exact component name (e.g., 'CLKINVX4").

The Conventional API Call Method:
change pin("stop/glue/u0/A", "CLKINVX4™, ™", '"-=")
With the LLM-driven approach, users can bypass manual searches and directly articulate their intent:

Insert type X4 invert into stop/glue/ul pin A

7.1.1 How Natural Language Translation Works

At its core, the Al-powered Natural Language ECO in GOF operates through a sophisticated translation layer. When a user
inputs a natural language command, the LLM processes it to:

e Parse Intent: The LLM identifies the user's primary goal (e.g., 'insert gate', 'change pin', 'connect net').

e Extract Parameters: It then extracts all relevant parameters from the natural language (e.g., instance name, pin name, gate
type, connection details, cell strength).

e Map to Internal APIs: These extracted parameters are mapped to GOF's robust set of internal Perl APIs (like "new_gate ",
‘change_pin", “get_net_of", etc.). The system is designed to handle the complexities of argument formatting, such as automatically
determining when a '-' is needed for "change_pin' based on the context.

e Generate Executable Script: The LLM generates a sequence of precise API calls that GOF can execute directly. This ensures that
the underlying operations are always valid and adhere to the tool's capabilities.

7.1.2 Benefits of AI-Powered Natural Language ECO

© 2025 NanDigits Design Automation All Rights Reserved. Page 53

GOF User Manual

e Enhanced Accessibility: Lowers the barrier to entry for new engineers and makes the tool more approachable for occasional
users, reducing the need for extensive API memorization.

e Increased Efficiency: Accelerates the ECO process by eliminating manual lookup of commands and syntax, allowing engineers to
focus on design intent rather than scripting mechanics. Faster prototyping and iteration cycles are a direct result.

e Reduced Errors: The Al's ability to interpret context and generate syntactically correct API calls minimizes common human errors,
leading to more reliable ECO patches.

e Intuitive Interaction: Transforms the command-line interface into a conversational problem-solving environment, making
debugging and modifications more natural.

e Robust Debugging: Since the natural language input is translated into detailed, standard API calls, the debugging process remains
as robust and transparent as with manually written scripts. The GOF Debug GUI interface further streamlines visual debugging,
making it highly convenient to inspect changes.

7.1.3 Example code

Example script for Natural Language ECO operations:

AI powered Natural Language ECO operations
use strict; # To catch script syntax issue
Setup ECO name 'auto svf'

setup eco("auto svf example");

read library("/1ib b"); # Read in standard library

read design("-imp", 3 yv"); # Read in Implementation Netlist file Which is under ECO
set top ("topmod") ;

set _ai(l); # Enable AT

type X4 invert into stop/glue/ul pir "); # NL ECO
L ange pin B of stop/glue) to ﬁl';;ﬂ*”);
run nl("Insert a NAND into stop/glue/regsame/D pin,
insert a MUX into B pin of the NAND,
connect the MUX SO pin to net bi,
connect the Mux B pin to a new inserted AND gate,
the AND gate is driven by net dft clk and pin mmux0/du0/Y,
connect the MUX A pin to net ci");

write verilog("eco.gv");

7.2 AI-Powered Spec-to-RTL Conversion and Incremental Modification

In the rapidly evolving landscape of chip design, the ability to quickly and accurately translate high-level specifications into RTL
code is paramount. Our advanced Al-powered solution revolutionizes this process by offering both full specification-to-RTL
conversion and intelligent incremental RTL modification, ensuring high accuracy and efficiency.

7.2.1 Full Specification to RTL Generation

Our platform enables designers to generate complete Verilog or SystemVerilog RTL code directly from comprehensive
functional specifications. By leveraging sophisticated Large Language Models (LLMs) and deep learning techniques, the system
interprets detailed design requirements, architectural descriptions, and behavioral logic provided in natural language or
structured formats. This capability significantly accelerates the initial design phase, allowing engineers to rapidly prototype
and explore design concepts without manual coding.

7.2.2 Incremental RTL Modification from Partial Specifications

Beyond generating new designs, a critical challenge in chip development is efficiently modifying existing RTL. Our solution
addresses this by supporting incremental RTL modifications based on partial specifications. Designers can provide targeted
updates or bug fixes in natural language (e.g., 'add a new input port X and connect it to Y', 'change the behavior of module Z
under condition W'). The AI agent intelligently analyzes the existing RTL, identifies the relevant sections, and generates only
the necessary code changes. This approach minimizes disruption to the established design, preserves existing verification
efforts, and drastically reduces the time and effort required for design iterations.

7.2.3 Ensuring High RTL Accuracy with a Multi-faceted Scoring System

Achieving high accuracy in Al-generated RTL is crucial. To this end, our system employs a robust, multi-faceted scoring
mechanism. When converting specifications to RTL, especially for complex logic, the Al generates multiple candidate RTL
versions. Each version is then rigorously evaluated against a set of predefined criteria, which may include:

e Functional Correctness: Verified through automated test bench generation and simulation results.
e Synthesizability: Checking for adherence to synthesis tool requirements and common design practices.

e Performance Metrics: Estimating potential timing, area, and power characteristics.

e Coding Style and Readability: Ensuring the generated code is clean, maintainable, and follows industry best practices.
e Formal Verification: Applying formal methods to prove logical equivalence or property adherence.

This comprehensive scoring system ensures designers receive the most precise and optimal RTL output, significantly improving code quality and reliability. Furthermore, the

system continuously refines its accuracy over time by learning from user feedback and successful design iterations.

7.2.4 Example code

Example script for converting Spec to RTL:

read library("-v", "the lib cells.v"); # optional
set_ai config('-fm num', 1, C ;
set_ail remote server ("lo
spec_to rtl("selection to r

n,on ENDAA ", "LIM 2 0");

7.3 Non-equivalent points debug automation by AI Agent

Chip designers have long faced a tedious, manual process when debugging non-equivalent points in a netlist—the
discrepancies between a reference design and an implemented one. Even with tools like GOF Debug, which offer powerful
features like counter-example tracing on schematics, the designer must still be an active participant. They're required to
manually read logic values and click through the design to trace the issue back to its source.

Enter the new era of Al Agent-driven debug automation. By leveraging the power of Large Language Models (LLMs), the GOF

platform is now capable of turning this manual, graphical process into a fully automated one, significantly reducing debugging
time and effort.

© 2025 NanDigits Design Automation All Rights Reserved. Page 54

GOF User Manual

Page (

How to automate non-equivalence debugging by Al Agent?

OUTPUT_data_out [0]

— uzo data_out [0]
INPUT_row_cnt_21lsb[0] ul® —
E:::jﬂloﬂ_cnt_zlﬁh[0153 row_cnt_21lsb[0] n74 c
GOF_enetl0 s n76
h_plusl[0]
OAI211D0
INPUT_test_mode
< 1 test_mode OUTPUT_data_out[0]
d.ar.n_nut[O}1
(o LT
tas a2l
B LY
row_cnt_21sb|[0 \

___:II 2) datayout[0]:1
S 1r
H
P s
OAIZ11DO

INPUT _row_cnt_21sb

1
Firow_gnt_21sb[0] :1 4

GOF_anatl0

Figure 51: How to automate the schematic non-equivalence debugging?
7.3.1 AI Agent Transformation

An Al agent, powered by a Large Language Model (LLM), automates the debugging process. Instead of a human, the Al agent
takes charge.

e GOF extracts detailed instance and logic value data from both the reference (REF) and implementation (IMP) netlists into a JSON
format.

The LLM analyzes this data to find discrepancies.

Acting as the debugger, the LLM tells GOF where to trace next in JSON output.

This loop of GOF providing data and the LLM guiding the trace continues automatically.

The process stops when the LLM identifies the root cause of the non-equivalence, giving designers a precise diagnosis without any
manual effort.

Round: 0

The REF instance:

{"connections":{"GOF_PIN_IN":"data_out[0]"},"function":"output-port","hierarchy™:"" "instance":"OUTPUT _data_out_0_""logic_wvalue":{"GOF

_PIN_IN":[1]},"module™:"GOF_CELL_OUTPORT","netlist_name™"REF","outnum_var":0,"ports™:{"GOF_PIN_IN":"input"}}

The IMP Instance:

{"connections™{"GOF_PIN_IN":"data_out[0]"},"function":"output-port”,"hierarchy™:"" "instance™:"OUTPUT _data_out_0_""logic_value™:{"GOF
PIN_IN":[0]},"module™:"GOF CELL OUTPORT" "netlist name™"IMP","outnum_var":0,"ports":{"GOF_PIN_IN":"input"}}

Al is thinking ...

“json

["DONE™0,"NEXT":{"REF":["data_out[0]"],"IMP":["data_out[0]"]}}

Round: 1

i
REF data_out[0] is driven by ZN of
{"connections":{"A1":"n76" "A2":"data_in_high_plus1[0]","B":"n69","C"."n74","ZN":"data_out[0]"},"function™:"ZN =
(H{(A1+A2)*B)*C));","hierarchy":"" "instance":"u20","logic_value™:{"A1":[1],"A2":[1]."B":[0],"C":[1]."ZN":[1]},"madule":"0AI211D0" "netlist_nam
e""REF","ports":{"A1" "input","A2""input","B"."input","C":"input","ZN":"output"}}
IMP data_out[0] is driven by ZN of
{"connections":{"A1":"n76","A2":"data_in_high_plus1[0]","B":"n69","C":"n74" "ZN":"data_out[0]"},"function™:"ZN =
(M((A1+AZ2)*B)*C));","hierarchy™:™" "instance":"u20","logic_value™:{"A1™:[0],"A2":[1],"B":[1],"C":[1],"ZN":[0]},"module™:"OAI211D0","netlist_nam
e""IMP","ports":{"A1":"input”,"A2""input","B":"input”,"C":"input","ZN":"output"}}
Al 1s thinking ...
“json
["DONE"0,"REASON":"The instances u20 in REF and IMP are functionally identical and connected to the same wires. However, their input
signals 'n76' and 'nB9" have different logic values, causing the output ‘data_out[0]' to differ. Tracing these input
signals.”,"NEXT":{"REF":["n76","n69"],"IMP":["n76","nB9"]}}

Round: 7

REF row_cnt_2Isb_md0 is driven by Z of {"connections":{"A1":"test_mode","A2":"row_cnt_2Isb[0]","Z""row_cnt_2Isb_md0"},"function™:"Z =

(AT+A2)" "hierarchy™ "™ "instance™: "hhu59" "logic_value":{{"A1":[1],"A2":[0],"Z":[1]},"medule”:"OR2D1","netlist_name™"REF","ports":{"A1""input","A2""inpu

t.,"Z";"OLItpLIt"}}

IMP row_cnt_2Isb[0] is driven by GOF_OUT_PIN of

{"connections":{"GOF_PIN_OUT":"row_cnt_2Isb[0]"},"function™"input-port","hierarchy":"","instance":"INPUT _row_cnt_2Isb_0_""logic_value":{"GOF_PIN_
"Ion.” " " “netli e""IMP* "outnum_var";1."ports":.{"GOF_PIN_OUT";"outout"}

Al is thinking ...

“json

"DONE":1,"REASON":"REF has an OR gate (hhu59) generating 'row_cnt_2Isb_md0' from 'test_maode’ and 'row_cnt_2Isb[0]', while IMP treats

ruve.cnt-Zisb[0]' directly as a primary input. This fundamental difference in how the signal is generated (derived vs. primary input) is the root cause of the

non-equivalence."}

Figure 52: AI Agent automates the debugging
7.3.2 Example code

Example script for AI Agent Non-equivalence debugging:

read library("tsmc.lib");

read design('-ref', "ref netlist.v");

read design('-imp', "imp netlist.v'");

set ail remote server("localhost", 1998, 0, " ENDOO ", " ENDAA ", "LIM 1 0 0");
ail debug noneqg("data out[0]");

7.3.3 Future Work

© 2025 NanDigits Design Automation All Rights Reserved. Page 55

GOF User Manual

This powerful Al agent-driven approach is not limited to just netlist non-equivalence issues. The same methodology can be
applied to gate-level netlist simulation debugging. By feeding the Al agent with simulation waveforms and netlist data, it can
analyze discrepancies between expected and simulated values. The agent then intelligently navigates the design to pinpoint
the exact source of a functional error. This adaptability highlights the immense potential of Al agents to revolutionize a wide
range of debugging and verification tasks throughout the entire chip design workflow.

8 Appendix A

8.1 APIs Detail Usage

add_mapped_instance

Add mapped instance pair between REF and IMP
Usage: add mapped_instance ($ref instance, $imp_ instance);
Examples:
add mapped instance ("u_subtop/u_def/state reg", "u subtop/uinst def/state reg");

ai_debug_noneq

Debug non-equivalent point with AT

Usage: ai_debug noneqg($instance);

Sinstance: Full path of non-equivalent flop instance, output port or blackbox input pin
Note:

1. It requires an AI server to be set up by set ai remote server.

2. It traces back the logic from the given instance/port ID.

Examples:

#1. Debug non-equivalence of flop u abc/u def/state reg 0
ai_debug noneq("u_abc/u def/state reg 0 ");

#2. Debug non-equivalent output port current value[7]
ai debug noneqg("current value[7]");

buffer

ECO command. Buffer high fanout ECO nets
Usage: buffer ($net names, S$buffer name, S$fanout);
Snetgnames: Net names to be buffered. Use "," to separate multiple nets, like "ecol netl,reset2"
Sbuffer name: The buffer module name from library, leave it blank to let the tool pick one.
It supports repeater case by ",", for example, "INVX1,INVX16" would have 'INVXL1'
drives 'INVX16' and 'INVX16' drives the fanouts.
$fanout: How many fanout to insert a buffer.

Examples:

#1. For every 10 fanout of test mode, add a buffer, BUFX6
buffer ("test mode", "BUFX6", 10);

#2. For every 10 fanout of 'clock', add repeaters, INVX2,INVX16
buffer ("clock", "INVX2,INVX16", 10);

#3. Let the tool pick a buffer
buffer ("clock", "", 10);

change_gate

ECO command. Modify an instance in ECO
Two types of usages
Usagel: change gate ($instance, Snew_reference, $pin_mapping);
$instance: The instance under ECO. Support hierarchical name, "u_abc/U123"
$new_reference: The new reference name which the instance changes to, E.G. 'AND3X1'.
If no reference is present, the ECO operation is assumed to
change the instance's pin connections.
$pin mapping: Input pins mapping, ".new(old)", E.G. ".Al(a),.B1(B)"
if two references have same input pins. The option can be empty
Usage2: change gate ($instance, S$Spin_connections);
$pin_connections: New pin connections, ".A(n242)".
The unspecified pins keeps the original connection.
E.G. pin 'B' connection is unchanged.

Examples:

#1. U123 has reference OR3X1l with input pins, A,B,C originally
change U123 to AND3X1l, all input pins are the same.
change gate('U123', 'AND3X1', "");

#2. A and B keep the connections, discard C
change gate('U123', 'AND2X1', "");

#3. A keeps the connections, B connects to what the old C connects. And discard old B
change gate('U123', 'AND2X1', ".B(C)");

#4. A,B,C keep the same, and new D pin connects to net nl23
change gate('U123', 'AND4X1', ".D(nl23)");

#5. A021X1 has input pins, A0, Al and BO
change gate('U123', 'A021X1', ".AO(A),.A1(B),.BO(C)");

#6. change Ul23 A to nl23, B to nl24, keep C connection.
change gate("U123", ".A(nl23),.B(nl24)");

#7. Rotating A/B/C connections.
change gate("U123", ".A(B),.B(C),.C(A)");

change_net

ECO command. Change a existing net's driver
Usage: change net (net, Sgate, $instance, S$connections);
S$net: The net to be ECOed
Sgate: New leaf gate to drive the net
S$instance: The instance name of the new gate. Optional, if it is empty, assigned by the tool
Sconnections: The new gate input pins connections. If it is empty, the gate is inserted in the net
Supported formats, 1. Very detail ".A(netO),.B(netl),.C(net2)"
2. Connect to the pins in alphabetical sequence
"netl,net0,net2" indicating A->netl,B->net0,C->net2
3. Other instance/pin "U408/Y,U409/Y,net2" indicating A->U408/Y,B->U409/Y,C->net2
4. Special character '-' is used to connect up the original connection

Examples:

#1. Drive nl23 with BUFX2 driven by n40
change net ("nl23", "BUFX2", "", "n40");

#2. Drive nl23 with AND2X2 driven by n40 and original nl23 driver
change net ("nl23", "AND2X2", "", "-,n40");

#3. Insert a buffer into nl23

© 2025 NanDigits Design Automation All Rights Reserved. Page 56

GOF User Manual

change net ("nl23", "BUFX2");

change_ pin

ECO command. Modify pin connection of instances by inserting gates, changing connection to other signal
Two types of usages.

Usagel: change pin($pin name, $net);
Change pin's connection to a net
$pin name: In the format of "instance/pin", can be more than one pins separated by ",",
"instancel/pinA, instance2/pinB", E.G. "U123/A", "U123/A,U345/B"
Hierarchical naming style is supported as well, "u abc/Ul23/A"
The pins have to be input in this mode.
Snet: The net name the pin connects to.
Hierarchical naming style is supported, "u_abc/netl23"
When the pin and the net are in different hierarchies, ports are added automatically
E.G.
The tool creates 4 ports across the hierarchies to connect the net to the pin.
change _pin("u_abc/u_cde/U200/A", "u_xyz/u_stv/net300");
The tool gets the net tie to Y pin of U300 and do the the same as the previous example.
change pin("u_abc/u_cde/U200/A", "u xyz/u_stv/U300/Y");

Usage2:my $inst = change pin($pin name, S$leaf cell, S$new instance, $connection);
Insert a new leaf cell to drive the pin
$inst: Return new instance name if new gate is created in the command.
$pin name: In the format of "instance/pin", E.G. Ul23/A Hierarchical naming is supported, u abc/U123/A
The pin can be output in this mode. The tool gets the net the pin drives,

and change the command to

change net ($thenet, $leaf cell, S$new_instance, S$Sconnection);
$leaf cell: The leaf cell name to drive the $pin name
Snew_instance: The instance name for the new inserted leaf cell.

The option is optional, the tool assigns one if it's empty

If use '.', the instance is added to the same hierarchy as the $pin name
$connection: The pins connection for the new cell.
Supported formats, 1. Detail format: ".A(net0O),.B(netl),.C(net2)"

2. Simple format: Connect to the pins in alphabetical sequence "netl,net0O,net2"
3. Mixed format: "u abc/U123/Y,.B(netl),net2"
4. Special character '-' is used to connect up the original connection
5. Advanced nesting format:
changegpin("U189/A", "AOI21X2", "", "U190/Y,,BUFX6 (BUFX6 (BUFX6 (n412)))");

Note: All strings should be quoted by ' or " to avoid syntax error or undesired effects.

Examples:

#1. U123 has input pins A,B,C, U234 has input pins AO0,Al,B
Change A pin of U123 to netl2345
change pin("U123/A", "netl2345");

#2. Change A pin of U123 to $net which is defined in the ECO script.
change pin("U123/B", S$net);

#3. Change A pin of U123 to netl2345
change pin("U123/A,U234/B", "netl2345");

#4. Insert "NAND2X2 ecol2345 UO(.A(netl234),.B(net5678));"
to drive U123/A
change pin("U123/A", "NAND2X2", "ecol2345 UO", "netl234,net5678");

#5. Same as above, with more detail of pin connections
change pin("U123/A", "NAND2X2", "ecol2345 UQ", ".A(netl234),.B(net5678)");

#6.Insert a buffer to U123 A pin
change pin("U123/A", "BUFX4", "", "-");

#7. Insert NAND2X1 to drive CK pin and new A connects to the original net
change pin("abc reg 1 /CK", "NAND2X1", "", ".A(-),.B(1'bl)");

#8. Do hierarchical connection
change pin("u_abc/u_cde/U200/A", "u_xyz/u_stv/U300/Y");

#9. Nested connection
change pin("gcif/num2/u_sparel/B", "AOI21X2", "eco inst on topl", \
"NAND2X2 (gte 344/u_smod/U100/Y, gte 344/nll4), gte 343/U111, BUFX6 (BUFX6(nl05))");

change_port

ECO command. Change an output port's driver, or add gate after input port
Usagel: change port ($port, S$gate, Sinstance, S$connections);
Sport: The port under ECO, can be input port or output port
$gate: New leaf gate to drive the port if the port is output
Or add the gate after input port
$instance: The instance name for the new leaf cell, optional, the tool assigns one if it's empty
$connections: The new gate input pins connections. If it is empty, the gate is inserted in the net
Supported formats, 1. Very detail ".A(netO),.B(netl),.C(net2)"
2. Connect to the pins in alphabetical sequence
"netl,net0,net2" indicating A->netl,B->net0,C->net?2
3. Other instance/pin "U408/Y,U409/Y,net2" indicating A->U408/Y,B->U409/Y,C->net2
4. Special character '-' is used to connect up the original connection
Usage2: change port ($port, $inst pin);
S$port: The port under ECO, output port
Sinst pin: In the format of 'ul234/Y', instance-name/pin-name
Note: The difference of change net and change port command
change net changes all drains of the net.
change port changes only the port driver.

Examples:

#1. Add buffer to output port 'outl'
change port ("outl", "BUFX1", "eco buf0", "-");

check_design

Check if the netlist status, searching for unresolved modules, floating and multi-drivers
Usage: check design(@options);
@options:
-ignore list: Ignore the issues matching the list, E.G. 'FE UNCONNECT*, SCAN_ *'.
—eco: Only check instances/wires having been done ECO. Default check all instances/wires
-fixfile filename: Create ECO fix file
-nouniquify: Dont check uniquify

Examples:

check_design;

check design('-ignore', 'FE_UNCONNECT*'");

check design('-ignore', 'FE_UNCONNECT*,SCAN *');
check design('-ignore', 'W-108");

check design("-eco");

© 2025 NanDigits Design Automation All Rights Reserved. Page 57

GOF User Manual

compare

Logic equivalence check on output port and register input pins
Usage: my $no_eq num = compare (@nets, @options);
Qoptions:
-help: Print this info
$no_eq num: Return back non-equivalent number

Examples:

#1. Check if output port 'state out' is equivalent in IMP/REF netlists
compare ("state out");

#2. Check two points at the same time.

Check if 'state reg 0 /D' is equivalent in IMP/REF netlists

And check if 'state reg 1 /D' are equivalent in IMP/REF netlists
compare ("state_reg 0_/D", "state_reg 1 _/D");

compare_nets

Check equivalence of two nets in the reference and implementation netlist
Usage: my Sresult = compare nets($net0, S$netl, Roptions);
$net0: The net in the reference netlist.
$netl: The net in the implementation netlist.
@options:
$result: 1, they are equal,
0, they are not equal.

Examples:

#1 Compare regl/D in the reference and regl/D in the implementation netlist
compare nets ("regl/D", "regl/D");

convert_gated_clocks

ECO command. Convert gated clocks to MUX logic.

In metal ECO, if gated clock cell is not in spare gate list, this command should run before map spare cells
Usage: my Scnt = convert gated clocks();

$cnt: The number of gated clock cells having been converted

create_clock

Timing command and GOF Formal command. Create clock for fault verification
Usage: create clock($clock name, S$clock period);

$clock name: Clock name, input port name or black box instance output pin
$clock period: Clock period

Note: This command can be used multiple times. The clock period is recommended to be multiples of 2
Examples:

#1. Create clock on PIN_SPI CLK, period 4ns
create clock ("PIN SPI _CLK", 4);

#2. Create clock on PIN APB CLK and PLL clk out
create clock ("PIN APB CLK", 2);
create clock("u pll top/u pll core/clk out", 2);

create_equation

Create equation for minterms and not care values.

Usage: Sret = create equation($symbols, Sones, $notcare);

$symbols: The symbols to be used in the equation in string 'a b c d'
Sones: The minterms in the equation, in string '0 1 2 3'

$notcare: The don't care values in the equation, in string '4 5 6 7'
$ret: The equation string

create_pin_mapping_json_file

Create pin mapping file between original synthesis netlist and pre-ECO netlist
Usage: create pin mapping json file($filename) ;
$filename: JSON file name

create_reset

Create reset for the design

Usage: createireset($reset7name, $activeilevel);

Sreset name: Reset name, input port name or black box instance output pin
Sactive level: The level that the reset is active

Examples:

#1. Create reset on PIN_RESETN, active low
create reset ("PIN RESETN", 0);

#2. Create reset on PIN RESET, active high
create reset ("PIN RESET", 1);

current_design

Set the current top level module
Usage: current design (Smodule) ;
Smodule: Set $module as the current top level module.
If the argument is missing, return the current setting
".." set to parent module, "~" set to the most top level module
Note: It can be reset to the root top module by 'undo eco'. It is alias command of 'set top'

current_instance

Set the current instance, alias of 'set inst'
Usage: current instance(Sinstance);
Sinstance: Set $instance as the current instance.
If the argument is missing, return the current setting
".." set to parent module, "~" set to the most top level module
Note: It can be reset to the root top module by 'undo eco'. It has same effect of 'set top' and 'current design'

del_gate
ECO command. Delete gate

Usage: del gate($inst);
$inst: The instance to be deleted.

del_net
ECO command. Delete net

Usage: del net($net);
$net: The net to be deleted.

© 2025 NanDigits Design Automation All Rights Reserved. Page 58

GOF User Manual

del_port

ECO command. Delete port
Usage: del port ($port);
Sport: The port to be deleted.

dft_drc

DFT DRC checker
Usage: my Serror = dft drc(@options);
$error: DRC errors in the checker
@Qoptions:
-single: One clock for each scan chain
-glitch: Check reset/set pin glitch

Examples:

#1. Run full DFT DRC

dft drc;

#2. One clock for each scan chain in DRC
dft drc("-single");

#3. Check reset/set pin glitch

dft drc("-glitch");

do_auto_change

AI command, do automatic ECO change
Usage: do auto change (Garguments) ;
@arguments: Automatically generated from the query in natural language

do_smart_query

AI command, do smart query conversion
Usage: do_smart_gquery(@arguments) ;
Qarguments: Automatically generated from the query in natural language

elab_rtl

Elaborate on RTL design
Usage: elab rtl();

elaborate

Elaborate and compile RTL files
Usage: elaborate();

exist_inst

Check if an instance exists

Usage:my Sret = exist inst($inst);

$inst: The instance for checking

Sret: 1, the instance exists 0, the instance does not exist

exist_wire

Check if a wire exists

Usage:my $ret = exist wire(Swire);
Swire: The wire name for checking
Sret: 1: exists 0: not exist

find_equal_nets

Find equivalent nets in IMP for the listed nets in REF, the results are printed out on the screen
Usage: find equal nets(Qref nets);
options: ("help","full=i")

-help: Print this info

Examples:
#1. Find IMP equal nets for 'mbist done', 'sync_start' in REF
find equal nets('mbist done', 'sync start');

fix_design

ECO command to fix the design in automatic ECO
Usage: fix design(Goptions);
@options:
-help: Print this information
-opt_set optimization set: Patch optimization set, 0: area/timing 1: cell count, default 0
-no_patch opt: Disable patch optimization. Also see API set no_patch opt
-flatten: Enable flatten mode ECO. The default mode is hierarchical
-list_file the list file: The ECO point list file converted from RTL-to-RTL LEC result
The list file format:
inst u def/u sdef/state reg 1
pin u control/u sreg/u mem 128x24/A[0]
port PORT_READY OUT
-iteration iteration number: Fix design iteration by default 3 times.
The tool repeats the fix process until there is no non-equivalent points or iteration number reached
Examples:

#1. Fix design on module 'VIDEO TOP' and its sub-modules
set_top ('VIDEO TOP');

set_ignore output ("TEST SO*");
set_pin_constant ("TEST EN", 0);

fix_design;

save session("this_ eco");

my $error = LEC;

#2. Do ECO in flatten mode
fix design("-flatten");

#3. Do ECO on points listed in the file
fix design("-1list file", $list file);

fix_logic

ECO command. Fix listed points
Usage: fix logic(@pin_port list,@options);
@Qoptions:

-force: Force the tool to replace the logic cone of the points in @pin port list
@pin port list:

List of the pins or ports whose logic will be fixed by the reference logic in Reference Netlist

The format is "sic cnt reg 0/D","sic cnt reg 1/D", '\bbr ccd reg[0] /D', "out port"

'\' should be kept if the instance has '\' as prefix.
E.G. "\bbr ccd reg[0] ' instance has '\' and last space in the name.

Examples:

© 2025 NanDigits Design Automation All Rights Reserved. Page 59

GOF User Manual

#1. Fix state regs's D inputs
fix logic("state reg 0/D", "state reg 1/D");

#2. Fix state regs's D inputs and one output port
fix logic("state reg 0/D", "state reg 1/D", "out port");

#3. Add one new flop, input pins have the same connections as the Reference Netlist
and the output is floating, -recover option sets to O
fix logic('new_flop reg/D', 'new flop reg/CK', 'new flop reg/RB');

flatten_modules

Flatten hierarchical modules in reference netlist
Usage: flatten modules (@module names) ;
@module names: List of modules to be flatten

Examples:

flatten modules ("retime 1", "sync_cell 0");

get_cell_cofactors

Get combinational cell pin Shannon expansion cofactors
Usage: @cofactors = get cell cofactors($cell, Spin);
$cell: Leaf cell name
$pin: Input pin name
@Qcofactors: Shannon cofactors for the pin of the cell
It has two items if the cell is combinational
It is empty if the cell is sequential or black-box

Examples:

#1. NAND2X1 A pin

@ret = get cell cofactors ("NAND2X1", "A"); # Qret = (1, B);

#2. A0I222X1 A0 pin

@ret = get cell cofactors("OAI222X4", "AQ");

returned Qret = ("! (Al*(BO*(CO+C1l)+!BO* (B1*(CO+C1))))"™, ™! (BO* (CO+C1l)+!BO* (B1*(CO+C1l)))");

get_cell_info

Get information of a module or instance
Usage: $data = get cell info(Smodule or_ inst, @options);
Smodule or inst: The module or instance's name
@options:
-help: Print this information
-conns: Get Connections of the item, only when it's instance
-type: Get the item's type information. It can be 'ff','cg, 'latch', 'buf',
run 'get 1lib cells -type info' for all existing type in the current libraries
An array is returned if this option is present
-libname: Get the library name that the cell is in
-area: Get the area of the item
-size: Get the size of the item
-fun: Get the function string of the item
-leakage: Get the leakage of the item
-ref: Same as 'get ref instance' if the item property is instance
-context: Get detail library information
-attribute attribute name: Check if the cell has the attribute set. 0 or 1 is returned
Sdata: Returned data, if '-attribute' option is present, $data is 0 or 1
In option is '-conns' case,
It is a hash having the following data structure
my $module = $hash->{module};
my $instance: S$hash->{instance};
foreach my $port (keys %{S$hash->{connections}}) {
my $net = Shash->{connections}{$port};

}

If no option is present, it return the item's property:
leaf instance leaf module hierarchical instance hierarchical module

Examples:

#1. Get area of one leaf cell
my Sarea = get cell info ("AND2X2", "-area");

#2. Get an attribute of one leaf cell
my $is _iso = get cell info("ISOX2", "-attribute", "is isolation cell");

get_cells

Get all cells in the current module or sub-modules
Usage: my @cells = get cells($pattern, Qoptions);
Spattern: The pattern matching instance name, '*', 'U*', 'Ul123' or '/UI .* ./'
It can have path, 'u clk/*', 'u abc/u_def/*'
@Qoptions:
-help: Print this information
-hier: Or -h, do the command hierarchically
-ref ref pattern: Get cells that has reference matching ref pattern, E.G. -ref OAI*
-type type pattern: Type pattern can be 'ff', 'latch','itiming', 'cg', 'not', 'rom', 'ram’
run 'get 1lib cells -type info' for all existing type in the current libraries
-type match type pattern: Get cells that have one of the types matches the type pattern
-leaf: Only leaf cells
-new: Only new created ECO instances
-verbose: To print out reference with instance
—-dotpath: Path delimit is '.' instead of '/'
-nobackslash: Remove backslash
-nonscan: Flops/sync-cells not in scan chain including those scan pins tied off
@cells: Returned array with all instances matched

Examples:

#1. Get all instances in the current module
my @cells = get cells('*'");

#2. Get all instances in the current module
my @cells = get_cells();

#3. Get all instances matching 'U234*' in the current module
my @cells = get cells('U234*'");

#4. Regular expression. Get all instances starting with U and followed by
two characters, like U10, U99
my @cells = get cells('/U../");

#5. Get all instances matching *reg * hierarchically

my @cells = get_cells('*reg * ', '-hier');

#6. Get all instances hierarchically and having reference matching DFE*
my @cells = get_cells('*', '-hier', '-ref', 'DFF*');

© 2025 NanDigits Design Automation All Rights Reserved. Page 60

GOF User Manual

#7. Get all instances in 'u kb'
my @cells = get cells('u kb/*');

#8. Get all flops, sync-cells not in scan chain
my @cells = get cells('-hier', '-nonscan');

get_conns

Get connections of net or pin in the top level module, return the leafs and the hierarchical connections
Usage: @result = get conns($net or pin, @options);
$net_or_pin: The net name or pin name that needs to get connections.
@Qoptions:

—driver: Return driver only

—load: Return load only

—count: Return connections count
@result: a two dimension array

instance, port name, pin or port, load or driver, is it a leaf,

@result = ([instance 0, pin 0, 'pin', 'load', 1],

)
Examples:

#1. Net 'n599' has three connections, instance 'U198' is the driver
get_conns ("n599") ;

gte 344 A[14] pin load 0

U198 Y pin driver 1

U94 AN pin load 1

#2. Net 'gcifhbeat' has three connections, it is output port of the current top level module
get_conns ("gcifhbeat")
gcifhbeat port load
U80 A pin load 1
gcifhbeat reg Q pin driver 1

#3. The argument in inst/pin format
get conns ("U187/A")

U294 Al pin load 1

U187 A pin load 1

U80 Y pin driver 1

#4. Return connections count
get conns ("U187/A", "-count");
3

get_coord

Get an instance's coordination
Usage: my ($x, $y) = get coord($instance);
$instance: Instance name

Examples:

my ($x, $y) = get coord("xbar/U1234");
$x=100, S$y=200 in um

get_definition

Get instantiation of instance

Usage: my S$line = get definition($inst);
$inst: Instance name.

$line: The instantiating line

Examples:

get_definition('U78");
Returns "AND2X1 U78(.A(nl), .B(n2), .Z(n3));"

get_driver

Get the driver of a net or pin
Usage: @driver = get driver (Spoint, @options);
Spoint: net name or pin name, 'nl2345' or 'U1l2345/Al1"'
Qoptions:
-pin: Return in "inst/pin" format, E.G. "state reg/Q"
Return an array if '-pin' is not present
-nonbuf: Trace the drivers until none buffer
@driver: The driver in array format, if '-pin' is not present.
If the point is floating, @driver is empty,
Sdriver[0]: Driver instance name. It is empty if the driver is port
Sdriver([l]: Driver pin or port name. If the driver is a port, it is the port name
Sdriver([2]: Driver type. It is string "pin" or "port" depending on the driver is port or leaf cell
Sdriver[3]: Driver phase. It is valid when -nonbuf is present,
indicating if the driver path is inverted
0: not inverted 1: inverted

Note:
1. If '-pin' is present, return a scalar, S$driver = get driver("nl2345", "-pin");
2. Use 'get drivers' if there are multiple drivers, the return data has different structure

Examples:

#1. Get driver of a net
@driver = get driver ("netl2345");
@driver has content of ("U1247", "Y", "pin");

#2. port abc is input port
@driver = get driver ("port abc");
@driver has content of ("", "port abc", "port");

#3. Return in instance/pin format
Sdriver get driver ("netl2345", "-pin");
Sdriver has content of "U1247/Y"

get_drivers

Get the drivers of a net or pin
Usage: @drivers = get drivers($point, @options);
Spoint: net name or pin name, 'nl2345' or 'U12345/Al"'
@Qoptions:
-nonbuf: Trace the drivers until none buffer
—-fanend: Fanin endpoints, flops or input ports or blackbox outputs
Qdrivers: An array of the drivers, if the point is floating, Qdrivers is empty,
if the point has multi-drivers, @drivers has more than one items.
For each item in @drivers
Index 0: instance, it is empty if the driver is port
Index 1: pin or port, if the driver is port, return port
Index 2: string "pin" or "port" depending on the driver is port or leaf cell
Index 3: indicating drive path inverted or not
If 'nonbuf' is present, the last item in @drivers is the non-buffer driver

© 2025 NanDigits Design Automation All Rights Reserved. Page 61

GOF User Manual

So '$nonbuf = pop @drivers' can get the non-buffer driver
Note:
Use 'get driver' instead if the net has only one driver and 'nonbuf' option is not used

Examples:

#1. Get drivers of a net
@drivers = get drivers("netl12345");
@Qdrivers has content of (["U1247", "Y", "pin"]);

#2. 'port_abc' is input port
@drivers = get_drivers("port_abc");
@drivers has content of (["", "port_abc", "port"]);

#3. Buffers in the path
@drivers = get drivers("state reg/CK", "-nonbuf");
@drivers has content of
(
[Hbuf_instoll’ "Yll, llpinll] ,
[Hinv_instl"’ "Yll, llpinll] ,
["and_inst2", "Y", "pin"]

)

#4. Fanin endpoints
@drivers = get drivers("u abc/state reg/D", "-fanend");
@drivers has content of
(
["u_abc/csg valid reg", "Q", "flop"],
["pin_in cs start", "GOF PIN OUT", "port"],
["u mem top/u sram lut", "Q[1]", "blackbox"]

)

get_instance

Get instance in the top level module
Usage: my Sinstance = get instance ($pattern, Qoptions);
S$pattern: Match pattern, can have wildcard "*", if it is empty, it is treated as "*"
@Qoptions:
-module: module name to have its instance name found
$instance: Return the first instance matching

Examples:

#1. The fist hierarchical instance matching 'ui_ *'.
Sinstance = get instance ("ui *");

#2. Find the instance name of module 'enet control'
S$instance = get instance ("-module", "enet control");

get_instances

Get all hierarchical instances in the top level module
Usage: my @instances = get instances ($pattern);
Spattern: Match pattern, can have wildcard "*", if it is empty, it is treated as "*"

@instances: Array of the hierarchical instances
Examples:

@instances = get_instances("UI_*"); # Any hierarchical instances with UI_ as prefix.
@instances = get_instances; # All hierarchical instances.

get_leaf_pin_dir

Get leaf cell pin's direction input/output/inout
Usage: my $dir = get leaf pin dir("$leaf name/$pin");
$pin: pin name, E.G. A or Bor Y

Sleaf: Leaf cell name, E.G. NAND2X2

$dir: return direction, input/output/inout

Examples:

my $dir = get leaf pin dir ("NAND2X2/A");

get_leafs_count

Get all leaf cells name and count in the top level module, return an array
Usage: @leaf count = get leafs count;
@leaf count: Array of leaf name and count

([leaf0, cnt0], [leafl, cntl], ...)

Examples:

@leaf count = get_leafs_count;
foreach my $leaf point (@leaf count) {
my $leaf name = $leaf point->[0];
my Scount = $leaf point->[1];
print "LEAF: $leaf name has $count cells

get_lib_cells

Get leaf gates in libraries
Usage: my @cells = get 1lib cells($pattern, Qoptions);

@options:
-help: This information
—char: All cells characterization

-type leaf type: Get leaf gates matching type.
Leaf type can be 'ff', 'latch', 'cg', 'buf', 'not', 'and'
-type info: List all types in the current loaded libraries
-verbose: If $pattern matches only one 1lib cell, print the cell 1lib information
Spattern: Library cell name pattern, can have '*'.
@cells: Return array with name matching

get_loads

Get loads of net in the top level module, return the leafs connections
Usage: @result = get loads($net_or pin, Goptions);
$net_or_pin: The net name or pin name that needs to get fanouts.
@Qoptions:
-nonbuf: Trace the loads until none buffer
-bypbuf: Don't include buffer/inverter in the return array
-hier: Loads cross hierarchies
—-fanend: Fanout endpoints, flops or ports
@result: A two dimension array. Each item has format of 'instance' and 'pin name' if
the load is leaf cell. Or 'port name' and 'GOF_PIN IN'
@result = ([instance_ 0, pin_ 0],
[instance_1, pin_1],
[port_name, GOF_PIN IN],

© 2025 NanDigits Design Automation All Rights Reserved. Page 62

© 2025 NanDigits Design Automation

GOF User Manual

get_loads_phase

Get loads of net with phase in the top level module, return the non-buffer/inverter leafs connections
Usage: @result = get loads phase($net or pin, @options);
Snet or pin: The net name or pin name that needs to get fanouts.

@options:
-help: This information
@result: A two dimension array. Each item has format of 'instance', 'pin name' and 'phase', if
the load is leaf cell. Or 'port name', 'GOF_PIN IN' and 'phase'
@result = ([instance 0, leaf 0, pin_0, 0],

[instance 1, leaf 0, pin_1, 1]
[port_name, GOF_CELL OUTPORT,GOF_PIN IN, 1],

get_logic_cone

Get logic cone of nets or pins
Usage: Sresult = get logic_cone (@InstancePinList, @options);
@InstancePinList: Instance/pin and net list.
Sresult: 1, the command fails. 0, the command completed successfully
Qoptions:

-o file name: Write output to the file. Default logic cone.v

Examples:
my @InstPin = ('abc reg/D', 'nl2345'");
my Sret = get logic_cone(@InstPin, '-o', 'MyLogicCone.v');

The logic cone is written out to verilog file 'MyLogicCone.v'

get_modules

Get modules under current module
Usage: @modules = get modules ($pattern, @options);
$pattern: Match pattern, can have wildcard "*", if it is empty, it is treated as "*"
@options:
-help: Print this information
-hier: Get all modules hierarchically

@modules: Modules list, ("moduleO", "modulel", ...)

Examples:

@modules = get modules ("*TM*"); # Any hierarchical modules with TM in the name.

@modules = get modules; # All hierarchical modules.

@modules = get modules("-hier"); # All hierarchical modules and sub-modules under current module.
get_net_of

Get net name connecting to a pin

Usage: my $net = get net of ($pin);

Spin: The pin of the instance, 'U1234.A1' or 'U1234/Al"'
S$net: The net name connecting to the pin

get_nets

Get nets that matching pattern
Usage: @nets = get nets(Spattern, Goptions);
Spattern: The net naming pattern, "*" or empty for all nets
@Qoptions:;
—const0: Get all constant zero nets
—constl: Get all constant one nets
@nets: returned net array.

Examples:

1#. Get all nets.
@nets = get nets("*");

2#. All nets with 'dbuffer' as prefix
@nets = get nets("dbuffer *");

3#. Get constant nets
@nets = get nets("-const0");

get_path

Get current hierarchical path
Usage: $path = get path();
$path: The current path

get_pins

Get pins of instance or module
Usage: @pins = get pins($name, @options);
Sname: The instance or module name, it can be hierarchical or leaf
@options:
-input: Get input pins
-output: Get output pins
-inout: Get inout pins
-clock: Get clock pin, only valid for sequential cell, flop latch and gated-clock-cell
-reset: Get reset pin, return "" if it doesn't exist
-set: Get set pin, return "" if it doesn't exist
-data: Get data pins
-attribute attribute: Get pins with the attribute
-nextstate type type: Get pins matching the type
which can be 'data', 'load', 'scan in', 'scan enable’
This option is only valid for sequential cell, flop, latch and gated-clock-cell
If no option is present, get all pins
@pins: All pins returned, in 'instance/pin' format

Examples:

#1. Get input pins of a hierarchical instance
my @pins = get pins("-input", "u_abc/U123");
Result @pins = ("u_abc/U123/A", "u_abc/U123/B")
#2. Get pins of a leaf cell

@pins = get pins ("AND2X2");
Result @pins = ("A","B","Y")

get_ports

Get all ports in the current top level module

All Rights Reserved.

Page 63

GOF User Manual

Usage: @matching ports = get ports($pattern, Qoptions);
Spattern: Match pattern, can have wildcard "*". If it is empty, it is treated as "*"
@options:
-input: Get input ports only
—output: Get output ports only
-inout: Get inout ports only
-bus: Get ports in bus format instead of bit blast.
The API returns an array point if this option present
The item in the array has format of [port, IsBus, MaxIndex, MinIndex]
if IsBus == 1, MaxIndex is the Max Index of the bus, E.G, 7 if the bus is port al[7:0]
if ISBus==0, MaxIndex and MinIndex are not defined

If no option is present, get all ports

@matching ports: Return ports matching the pattern and the option specified in
the current top level module

Examples:

@ports = get _ports("-input", "dsp2mc_*"); # Get input ports with "dsp2mc_" as prefix
@ports = get ports; # Get all ports

get_ref

Get the reference of the instance, return leaf cell name or hierarchical module name
Usage: Sreference = get ref (Sinstance);

$instance: Instance name, "U123"

Sreference: Return reference name, "NAND2X4"

get_resolved

Resolve the relative path to module and leaf item
Usage: ($module, $leaf) = get resolved($relative path);
$relative path: Relative path, like "u abc/u def/U456"
Smodule: Resolved module name, like "def"

S$leaf: Resolved leaf name, like U456

Examples:

my ($module, $leaf) = get resolved("u abc/u def/U456");
$module has value "def"
$leaf has value "U456"

get_roots

Get root designs name
Usage: my @rootdesigns = get roots;
@rootdesign: returned root designs name

get_scan_flop

Get scan flop for the non scan flop
Usage: my $scanflop = get scan flop ($nonscanflop) ;

Examples:

Get a corresponding scan flop for non scan flop DFFHQOX1
my $scanflop = get_scan_flop ("DFFHQOX1") ;

get_spare_cells

ECO command. Get spare cells
Usage: get_spare cells($pattern,@options);
Spattern: Spare leaf cell instance pattern, E.G. 'spare inst*/spare gate*'
Extract spare cells from the database with the pattern
The first half before '/' is hierarchical instance pattern, it is '*' for top level
The second half after '/' is leaf instance pattern
It is ignored if -file option is present
Qoptions:
-o file name: Write updated spare cell list to the file,
by default, it has name 'spare cells scriptname.list'
-file spare list file: Load in spare cell list file instead of extracting from the database
-gate array gate array naming: Gate Array naming style, like 'G*', most standard libraries have Gate Array cells naming starting with 'G'
This option enables Metal Only Gate Array Spare Cells ECO flow
-gate array filler gate array filler naming: Gate Array Filler naming style, like 'GFILL*',
or 'GFILL*|GDCAP*' to include both GA Filler and GA DCAP
-ignore load: By default, if the spare cell has fanout, it won't be added into the list. When this option is set,
any matched spare cell is added into the list
-exclude cell type cell type: Exclude cell type matching cell type, cell type supports wild card like DFFRS*
-addfreed: Only use deleted gates as spare resource

Examples:

#1. Extract spare cells from the database, matching instances like "SPARE u0"
get spare cells("*/SPARE *");

#2. Matching hierarchical instance "someSpare *" and leaf instance "spr gate*"
get spare cells("someSpare */spr gate*");

#3. Extract spare cells from file "spare cells list.txt"
get spare cells("-file", "spare cells list.txt");

#4. Enable Gate Array Spare Cells Metal Only ECO Flow, map spare cells will map to Gate Array Cells only
get spare cells("-gate array", "G*", "-gate array filler", "GFILL*|GDCAP*");

#5. Matching hierarchical instance "someSpare *" and leaf instance "spr gate*", but excluding DFFRS*
get_spare cells("someSpare */spr_gate*", "-exclude cell type", "DFFRS*");

#6. Only used freed gated in metal only ECO

del gate("u_control/the status_reg"); # Delete the unused flop and its logic cone will be deleted
fix design;

get spare cells ("-addfreed");

map spare cells;

Note:

The API has to run on top level,

set_top ('most_ top module')
get_spare cells("someSpare */spr gate*");

get_spare_in_use

Get spare cells used in the ECO
Usage: set spare in use();

gexit

Exit the command interactive mode

© 2025 NanDigits Design Automation All Rights Reserved. Page 64

GOF User Manual

Usage: gexit;

gof_version

Print out GOF version
Usage: gof version;

gprint

Print the message and save to log file
Usage: gprint ($info);
$info: The message to be printed.

insert_gate

ECO command. Insert gate into instance pin

Usage: insert gate(Spin_name, $gate type, $leaf cell name, Sconnection, Snumber);
$pin name: In the format of "instance/pin"

Sgate type: Gate type like buf, not, and2, mux, or, latch and etc

$leaf cell name: Leaf cell name with special name like NAND2X4, *X4

Sconnection: The connection to the new created instance

$number: The new inserted gate number

return an array with $number of the new created instances, default to be one

Note: This API is mainly for AI automation

is_ leaf

Check if a module or instance is leaf cell

Usage: my Sleaf = is_leaf ($name);

$name: The module or instance under check

Sleaf: 0, it's a hierarchical module, (Or the module is not defined)
1, it's leaf cell. Like, NAND4X8

is_pin_masked

Check if an instance pin has been masked in the current constraint
Usage: my $is masked = is pin masked($inst pin);
$inst pin: Instance pin, for instance u control/u mbist/Ul/A
$is masked: 0, it is not masked
1, it is masked

Examples:

#1. Check if a DFT MUX has B pin masked in DFT mode 'MX2X4 uMUXD9(.A(ana in),.B(test in),.S(atpg mode), .Z (mux out9));
set pin constant ('atpg mode', 1);
my $is masked = is pin masked ("uMUXD9/A"); # It returns 1

is_scan_flop

Check if an instance is scan flop
Usage: my $isscan = is scan flop ($name);
S$name: The cell name or instance name
$isscan: 0, it's not a scan flop

1, it's a scan flop

is_seq
Check if an instance or a leaf cell is a specific sequential cell

Usage: my Sisseq = is_seqg($name, Qoptions);
Sname: The instance under check

@Qoptions:
-help: This information
-ff: Check if it's a flipflop
-bank: Check if it's a multibit flop
-latch: Check if it's a latch
-Ccg: Check if it's a gated clock
-rom: Check if it's a rom
-ram: Check if it's a ram

Sisseq: 0, it is not the specific sequential cell
1, it is the specific sequential cell

list_wireload

Timing command. List all wireload defined in the liberty files
Usage: list wireload;

map_spare_cells

ECO command. Map all new created cells to spare cells
Usage: $status = map_spare cells;
$status: 0: the mapping is successful
non zero: the mapping fails
@Qoptions:
-help: Print this information.
-syn Synthesis command line:
By default, the built-in Synthesis Engine is used.
External Synthesis tool can be picked by this option
RTL Compiler and Design Compiler are supported.

E.G. "map spare cells('-syn', 'rc')" to pick RTL compiler

"map spare cells('-syn', 'dc shell')" to pick Design Compiler
User can specify more values in the synthesis command
E.G. '-rc', "rc -E -use lic RTL Compiler Physical"

-lib header file name: This option is Valid when '-syn' option is present. To insert the content of
file 'file name' to the header of synthesis tcl script. So that '.lib' file to
'.db' conversion can be avoided in Design Compiler case.
For example, in Design Compiler case, the file content should have
set search path [list /project/lib/synopsys db]
set target library [list art40 hvt art40 svt]
set link library [list art40 hvt art40 svt]
-nofreed: Don't add freed gates for synthesis.
-nobuf: Don't insert buffers/repeaters in long wires.
-notielow: Don't tie low of the input pins of output floating gates, delete them instead
-pause: Pause the tool before apply the patch
-exact: Map to the exact name of spare cell, by default the tool picks up a spare cell with
the same function, for example, pick up 'INVX2' for 'INVX4'
-gcmp: Use GOF compiler
-nospare_mapping: Don't map to physical spare gates even DEF file is loaded
Note: A DEF file is needed for mapping to exact spare instances.

Examples:

#1. Map to spare cells and use the built-in Synthesis Engine
my Sstatus = map_spare cells;

#2. Use extra 'rc' option
map_spare_cells('-syn', "rc -E -use lic RTL Compiler Physical"

© 2025 NanDigits Design Automation All Rights Reserved. Page 65

GOF User Manual

#3. Don't add freed cells for synthesis
map_spare cells('-syn', "rc -E -use lic RTL Compiler Physical", "-nofreed")

new_gate

ECO command. Create new gate
Usage: @return = new gate ($new net, S$reference, $new instance, $connections);
Note: if the command is called in the context of return a scalar, the new created instance name
returns.
The usage is the same as new net, except Sreference has to be defined,
and return back instance if scalar present.
Run "help new net" for detail in the shell "GOF >"

new_net

ECO command. Create a new net
Usage: @return = new_net (Snew_net, Sreference, $new_instance, Sconnections);
Snew_net: The new net to be created, if not defined, the tool assigns one automatically
Sreference: The leaf gate name to drive the net.
$new_instance: The instance name of the new cell, or leave it empty to get automatically assigned.
$Sconnections: The new gate input pins connections
Supported formats, 1. Detail format: ".A(net0O),.B(netl),.C(net2)"
2. Simple format: Connect to the pins in alphabetical sequence
"netl,net0,net2" indicating .A(netl), .B(net0), .C(net2)
3. Mixed format: "instance/pin" and net, "U408/Y,U409/Y,net2" indicating
A to U408/Y, B to U409/Y and C to net2
4. The "instance/pin" can have sub-instance hierarchy, "u abc/U408/Y"
@return: Have the new created instance and net name.
Sreturn[0] : New created instance.
Sreturn[l] : New created net.

Note: Hierarchical path is supported in any net or instance in the command,
for instance, new net ('u abc/netl24',
If the command is called in the context of return a scalar, the new created net name is returned.
The new net is assumed to be driven in the path it is created,
for instance, new _net ('u_abc/ecol2345 netl24');
ecol2345 netl24 should be driven in sub-instance u abc after it is created.

Examples:

#1. NAND2x2 instance name 'U_eco 123' driving new net 'netl23'
new net ("netl123", "NAND2X2", "U eco 123", ".A(n200),.B(n201)");

#2. INVX2 with instance name 'U inv' is created in u_abc sub-instance

and the input pin of the new invert is driven by n200 in current top level
port would be created if n200 doesn't drive input port to u abc

new net ("u _abc/netl23", "INVX2", "u abc/U_inv", "n200");

#3. Create a new net "net500"
new net ("net500");

#4. Create a new instance with new net tied to output pin, input pin is floating.
Sreturn[0] is new created instance, S$return[l] is new created net.
@return = new net("", "INVX2", "", "");

new_port

ECO command. Create a new port for the current top level module
Usage: new_port ($name, @options);
$name: Port name
@options:
-input: New an input port
—output: New an output port
-inout: New an inout port

Note: The port name has to be pure words or with bus bit, like, abc[0], abc[l]

Examples:

new_port ('prop control en', '-input'); # create an input port naming 'prop control en'
new_port ('prop_state[2]', '-output'); # create an output port with bus bit 'prop_ state[2]'
new _port ('prop state[3]', '-output'); # create an output port with bus bit 'prop state[3]'

place_gate

ECO command. Place an instance to a specific position
Usage: place gate(Sinst, $x, $y);

$inst: The instance to be placed

$x,8y: The coordinate

Note: This command affects the spare gate mapping of the instance.
Examples:

A flop is added and placed in some location

In 'map spare cells' command, the flop is mapped to a spare flop closest to the location
changeipin("Ul23/A", "DFFX1", "eco dff reg", ".D(-),.CK(clock)");

place gate("eco dff reg", 100, 200); # location, 100um, 200um

map spare cells;

place_port

ECO command. Place port position

Usage: place port (Sport, $x, $y);

Sport: The port to be placed

$x,$y: The coordinate

This command has effect on change port ECO command

pop_top

Pop out the saved top level module from the stack and discard the current setting
Usage: pop top;

post_recovery

ECO command. recover deleted gates after ECO
Usage: post_recovery (Goptions);
@Qoptions:

-inv: Replace INV by NAND/NOR

-incr: Incremental, preceded by map_ spare cells

preserve_modules

Preserve wires in the modules listed or all modules
Usage: preserve modules (€module list, @options);
Qoptions:

-all: Preserve wires in all modules

© 2025 NanDigits Design Automation All Rights Reserved. Page 66

GOF User Manual

push_top

Set the current top level module and push the previous setting to stack, pop_top can retrieve it
Usage: push_top (S$module) ;
Smodule: Set the S$module as the top level module, push the previous setting to the stack

read_ctl

Read CTL file

Usage: read ctl($ctl file);

$ctl_file: CTL file name to be read in

Note: It is for memory scan structure resolving in DFT DRC

Examples:

#1. Read in memory CTL file
read ctl("mem 1248x32.ctl");

read_def

Read DEF file
Usage: my $status = read def (@files, Qoptions);
@files: DEF files
@options:
—defverbose: Report all DEF parsing warnings and errors
$status: If zero, the files have been read in successfully
if non-zero, failed to read in the files

Examples:

my Sstatus = read_def ("soc_top.def"); # Read in soc_top.def
my $status = read def("soc topl.def", "soc top2.def"); # Multiple DEF files

read_design

Read verilog netlist files
Usage: my Stop module = read design(@files, @options);
@files: Verilog netlist files
@Qoptions:
-imp: The netlists are for the Implementation which are under ECO
-ref: The netlists are for the Reference
-prelayout: The netlists are prelayout for hierarchical ports phase detection
-Top_1l: Read design to create Top_l tree database
-Top_2: Read design to create Top_ 2 tree database
Note: If no -imp or -ref option is provided, the netlist is assumed 'implementation'
$top_module: Return top level module name after the successful read

Examples:

#1. Read in an implementation netlist file
my S$top module = read design("-imp", "soc_design resynthesized.gv");

#2. Read in a reference netlist file
my $top module = read design("-ref", "soc design released.gv");

#3. Read in two reference netlist files
my S$top module = read design("-ref", "soc design released.gv", "soc io.gv");

read_file
Read timing violation report file

Usage: my $status = read file($file name, Qoptions);
$file name: file name

@options:
-format format: accu/pt
accu —--- Accucore report file.
pt -—— Prime Time report file

$status: If zero, the file is read in successfully
if one, failed to read in the file

Note: Prime Time timing report file should be generated by report timing command with these options
report timing -nosplit -path type full clock expanded -delay max/min -input pins \
-nets -max paths 10000 -transition time -capacitance

Examples:
my $status = read file("soc primetime hold.report", "-format", "pt");

read_lef

Read LEF file

Usage: my Sstatus = read lef (Qfiles);

@files: LEF files

Sstatus: If zero, the files are read in successfully
if one, failed to read in the files

Examples:

my $status = read lef("soc_top.lef"); # Read in soc_top.lef
my Sstatus = read lef("soc_top.lef", "soc topl.lef", "soc_top2.lef"); # Read in multiple LEF files

read_library

Read standard library or verilog library files
Usage: my $status = read library(@files, @options);
Qoptions:
-v: Treat the @files as verilog library files
-lib: Treat the @files as standard library files
—-f library list file: Load library files from list file, the list file has format of
-v verilog 1ib0.v
-v verilog libl.v
-1lib tsmc40.lib
-vmacro: Treat the @files as macro library files which are used as macro cell in ECO
-rtl: Treat as RTL format
-gate: Treat as gate format, if not specify -rtl or -gate, the tool automatic picks one
—top top module: Only process the module top module as the leaf cell, discard all other modules
-ref: The library is for the Reference Netlist only
@files: Standard library files, or verilog library files

Note: The three options, '-v' '-lib' and '-vmacro' don't coexist.
If the file has .lib extension, '-1ib' can be omitted, and it is treated as standard library file.
If the file has .v or .vlib extension, '-v' can be omitted, and it is treated as verilog file.
$status: If zero, the file is read in successfully
if one, failed to read in the file

Examples:

© 2025 NanDigits Design Automation All Rights Reserved. Page 67

GOF User Manual

my $status = read library("arm 40 hvt.lib", "arm 40 io.lib");

my $status = read library("analog stub.v", "analog stub2.vlib");

my $status = read library("-v", "analog stub.gv");

my S$status = read library("-vmacro", "macrocell.v");

my $status = read library("-f", "lib files.list");

my $status = read library("-top", "abs control top", "abs control top post.v");

my $status = read library("ref special.lib", "-ref"); # The library is only for the Reference Netlist
read_rtl

Read RTL files

Support SystemVerilog (IEEE 1800-2017)

Usage: read rtl(@files, Qoptions);

@Qoptions:
-imp: The RTL files are for Implementation
-ref: The RTL files are for Reference

Note: It can only run on Centos7 and above, Centos6 is not supported.

read_rtipatch

Read RTL Patch file

Usage: my $status = read rtlpatch($file, @options);

Sfile: RTL file for ECO

Sstatus: If zero, the file is read in successfully
if one, failed in reading the file

Examples:

#1. Read in RTL Patch verilog file
my $status = read rtlpatch("rtlpatch change.v");

#2. Multiple RTL Patch files are read in one by one
my $statusl = read rtlpatch("rtlpatch changel.v");
my $status2 = read rtlpatch("rtlpatch change2.v");

read_sdf

Read SDF Standard Delay Format file
Usage: my $status = read sdf (Goptions, @files);
@files: SDF files, can be in gzip format

$status: If zero, the files have been read in successfully
if non-zero, failed to read in the files

Examples:
#1. Read in slow corner top level SDF file for design TM QCIF
read sdf ("TM QCIF slow.sdf.gz");

read_sub_module_netlist

Read in new synthesized netlist file
Usage: read sub module netlist ($sub_module file, @options);
$sub module file: Netlist file name
@options:
-sub only: The netlist is one module file, it may have sub-instances as black boxes
-module module name: The sub-module name in the original top netlist to be replaced
-syn_module syn module name: The sub-module name in the new synthesized netlist
-suffix suffix name: Add suffix string to all modules in the module name defined in 'module' option

Examples:

#1. Reads in mem controller module and its sub-modules, ahb arb module and its sub-modules, and mem ahb top module only

read_sub _module netlist ("new mem controller.gv", "-module", "mem controller");
read_sub module netlist("new_ahb arb.gv", "-module", "ahb arb");
read _sub module netlist("new mem ahb top.v", "-module", "mem ahb top", "-sub_only");

#2. Reads in new synthesized netlist files, new mem controller.gv and new_ahb arb.gv, and modified parent module new mem ahb top.v.
The new sub-module netlist new mem controller.gv is to replace two uniquified modules in the original top netlist,
mem controller 1 and mem controller 2 and their hierarchical sub-modules.
The new sub-module netlist new _ahb arg.gv is to replace ahb arb and its hierarchical sub-modules in the original top netlist.
And the new modified new mem ahb top.v is to replace the sub-parent module mem ahb top only.

read_sub module netlist("new mem controller.gv", "-module", "mem controller 1", "-syn module", "mem controller", "-suffix", " 1");
read sub module netlist("new mem controller.gv", "-module", "mem controller 2", "-syn module", "mem controller", "-suffix", " 2");
read sub module netlist("new ahb arb.gv", "-module", "ahb arb");

read sub module netlist("new mem ahb top.v", "-module", "mem ahb top", "-sub_only");

read_sub_module_svf

Read in new synthesized design SVF file
Usage: read sub module svf ($sub module svf, @Qoptions);
$sub_module_svf: Sub-module SVF file name
@Qoptions:
-module module name: The sub-module name in the original top netlist that will be replaced
-syn module syn module name: The sub-module name in the new synthesized netlist
-suffix suffix string: Add suffix to all modules under the module name defined by 'module' option, s
Notes: The command can be run several times

Examples:

#1. Reads in mem controller module and its sub-modules, ahb arb module and its sub-modules SVF files

read sub module svf("new mem controller.svf", "-module", "mem controller 1", "-syn module", "mem controller");
read sub module svf("new ahb arb.svf", "-module", "ahb arb");

read_svf

Read Synopsys SVF text files

Usage: my $status = read svf (Goptions, @files);

@files: SVF text files

@Qoptions:
-imp: The SVF file is for the Implementation netlist
-ref: The SVF file is for the Reference Netlist
-Top_l: The SVF file is for Top 1 tree database
-Top_2: The SVF file is for Top 2 tree database

$status: If zero, the files have been read in successfully
if non-zero, failed to read in the files

Note: This command must be run before read design
SVEF should be in text format

Examples:
#1. Read in both SVF files for IMP/REF
read_svf ("-ref", "ref design.svf.txt");

© 2025 NanDigits Design Automation All Rights Reserved. Page 68

GOF User Manual

read svf ("-imp", "imp design.svf.txt");
read design("-ref", "ref design.v");
read design("-imp", "imp design.v");
read_vcd

Read VCD file
Usage: read vcd($ved file);
$ved file: VCD file name to be read in

Examples:

#1. Read in VCD generated in verify faults
read_vcd("fault_seu.vcd");

rename_net

ECO command. Rename a net name

Usage: rename net (Soldname, Snewname);
Soldname: 0Old net name

Snewname: New net name

replace_sub_module_netlist

Replace sub-module in the design by a new re-synthesized sub-module netlist and write to a new top netlist
Usage: replace sub module netlist(Snew_top netlist file);
Snew top netlist file: The replaced and new top level full netlist to be written out

Examples:

#1. Replace sub-module 'mem controller', 'ahb arb' hierarchically, and 'mem ahb top' module, and write out to a new full netlist
read library("tsmc.lib");

read design("-imp", "top ref.gv");

read sub module netlist ("new mem controller.gv", "-module", "mem controller");

read sub module netlist("new ahb arb.gv", "-module", "ahb arb");

read sub module netlist("new mem ahb top.v", "-module", "mem ahb top", "-sub only");

replaceisubimodulegnetlist("Hewgtopgref.gv");
#2. Replace sub-module 'mem controller', 'ahb arb' hierarchically in netlist and SVF, replace 'mem ahb top' module only,
and write out to a new full SVF file and a new netlist

read library("tsmc.lib");
read svf ("-imp", "top ref.svf");

read design("-imp", "top ref.gv");

read sub module svf ("new mem controller.svf", "-module", "mem controller");

read sub module svf ("new ahb arb.svf", "-module", "ahb arb");

read sub module netlist ("new mem controller.gv", "-module", "mem controller");

read sub module netlist("new ahb arb.gv", "-module", "ahb arb");

read_sub_module netlist ("new mem ahb top.v", "-module", "mem ahb_ top", "-sub_only"); # This module is parent module with instantiation only
replace_sub_module netlist("new_top ref.gv"); # Run netlist replacement first

replace sub module svf ("new top ref.svf"); # Then SVF replacement

replace_sub_module_svf

Replace sub-module SVF in the design by a new re-synthesized sub-module SVF file content
Usage: replace_sub module svf ($new top design_svf);

$new_top design_svf: The replaced and new top level full SVF file to be written out

Examples:

#1. Replace sub-module 'mem controller', 'ahb_arb' hierarchically in netlist and SVF, replace 'mem ahb top' module only,
and write out to a new full SVF file and a new netlist

read library("tsmc.lib");

read_svf ("-imp", "top_ref.svf");

read design("-imp", "top ref.gv");

read sub module svf ("new mem controller.svf", "-module", "mem controller");
read sub module_ svf ("new ahb arb.svf", "-module", "ahb arb");

read _sub module netlist("new mem controller.gv", "-module", "mem controller");
read sub module netlist("new_ahb arb.gv", "-module", "ahb arb");
read_sub_module netlist ("new mem ahb top.v", "-module", "mem ahb top", "-sub_only"); # This module is parent module with instantiation only
replace sub module netlist("new top ref.gv"); # Run netlist replacement first
replace sub module svf ("new top ref.svf"); # Then SVF replacement
report_eco

Report ECO

Usage: report eco($filename, Qoptions);
$filename: Write report to the file name. If $filename is not present, print to screen
@Qoptions:

-help: Print this information

-simple: Print in simple format

report_spares

Report Spare cells
Usage: report spares;

report_timing

Timing command. Report timing
Usage: report timing(@options);
@options:
-help: Prints this information
-delay type S$delay type: Specifies the type of path delay: max (default) or min
-from: $startpoint, Starting point of the timing report
-to: $endpoint, Ending point of the timing report
-through: $through points, Through points, the value can be an array point
-thr_and: Through points should all present
-max_paths number: Max path number to report, if it is not set, only report one path
-all: Reports all timing paths
-input_pins: Displays input pins of instances
-nosplit: Prevents line splitting
Note: If none of the 'from' or 'to' or 'through' option is present, the timing report is on the paths that go through the ECO instances

Examples:

#1. Report timing on the paths that go through the ECO instances
report timing();

#2. Report timing on the instances that in through option

my $thr instances = ["u_control/u clk/U120", "u_control/u mbist/Ul17"];
report timing("-through", $thr instances);

© 2025 NanDigits Design Automation All Rights Reserved. Page 69

GOF User Manual

#3. Report timing on the instances that in through option and they should all appear in the report path
my $thr instances = ["u control/u clk/U120", "u control/u mbist/Ul17"];
report timing("-through", $thr instances, "-thr and");

restore_session

Restore ECO session

Usage: restore session("$directory/$session name");
$directory: The directory that the session has been saved
$session name: The session name

Examples:

To restore the session "myeco" in sub-directory "mach ai"
restore_session("mach ai/myeco");

rtl_compare

RTL to RTL compare

The compare result is used in fix design, so that Gate to Gate comparing can be skipped
Usage: rtl compare (@options) ;

Qoptions:

rti_lec

RTL to RTL logic equivalence checking
Usage: rtl lec($imp rtl, S$ref rtl, $module name, @options);
$imp rtl: Implementation RTL
Sref rtl: Reference RTL
$module name: Top module name
Qoptions:
-help: Print this information
—debug: Debug mode

Examples:

#1. Compare gl rtl.v vs g2 rtl.v with module name chip top
rtl lec("gl rtl.v", "g2 rtl.v", "chip top");

run

Run Netlist processing script
Usage: run($script name);

Examples:

run ("eco2.pl");

run_lec

Run Logic Equivalence Check of the Implementation Netlist vs the Reference Netlist
Usage: run lec(@options);
@Qoptions:
-list_file the_list file: The LEC point list file
The list file format:

inst: u_def/u sdef/state reg 1_

pin: u control/u_sreg/u mem 128x24/A[0]

port: PORT READY OUT

run_nl

AI command, run natural language command

Usage: run nl("Insert X12 invert into u_abc/u def/U123 A pin");
Note:

1. Setup AI server by set al remote server

save_session

Save ECO session

Usage: save session("S$directory/$session name");
$directory: The directory that the session should be saved
$session name: The session name

Examples:

To save a session "my eco" in sub-directory "mach ai"
save_session("mach ai/my eco");

sch

Launch schematic to verify ECO
Usage: sch(@instances, Qoptions);
@instances: Instances or nets in the current module to be displayed on the schematic
@Qoptions:
-set value: Set a value when launch the schematic
-to value: To existing schematic
-both: Load the item in both implementation and reference netlist
-all noneq: Load all non-equivalent points to the schematic

Examples:

sch("U123", "U456", "inst0");

sch("clk")

SCh("il’ll", "_Set", lllll);

sch("inl", "-to", "1"); # No action if schematic 1 doesn't exist

set_ai_config

Config AI settings
Usage: set ai config(Qoptions);
@options:
-help: Print this information
-decompose: Decompose the spec into sub-tasks, 0: No (default), 1l: Yes
—-fm num: The number of formal processes
-algo_type: The algorithm type of LLM run

set_ai_remote_server

Setup remove AI server

Usage: set_ai remote server (Shost, $port, $random range, $query ending, Sanswer ending, $1lm model set);
Shost: Server host, 'localhost' for server runs in the local

Sport: Port number

$random_range: Add a random number to $port, default to be zero

Squery ending: The ending string adding to query, default to __ ENDQQ

Sanswer_ending: The ending string adding to answer, default to _ ENDAA

$11m model set: The LLM model selection in the server

© 2025 NanDigits Design Automation All Rights Reserved. Page 70

GOF User Manual

set_auto_fix_floating

ECO setting. Enable automatic fixing floating input ports after fix modules
By default, it is enabled.
Usage: set auto fix floating(0); --- Disable automatic fixing floating input ports.

set_ bfix

Enable or disable BFIX features which is for precise combinational logic fix
Usage: set bfix(Sval);
$val: Default 0x3
Bit 0, Set one to enable Reorder Method
Bit 1, Set one to enable Cutpoint Method
bit 2, Set one to force using Reorder/Cutpoint Method instead of Structure Method

Note: It should run before fix design

set__blackbox
Set Blackbox on Modules
Usage: set blackbox (@modules, @options);
@module: Module names to be set as blackbox, accept wild card '*'
@options:
-hier: Set blackbox on the module and its sub-hierarchical modules
Only valid on module name without '*'
Note: This command can be used multiple times

Examples:

#1. Set Blackbox on DW modules
set blackbox ("*DW pipe*");

#2. Set Blackbox on 'ABC' and 'DEF' modules
set_blackbox ("ABC", "DEF");

#3. Set Blackbox on memory control and its sub-hierarchical modules. Set Blackbox on one DW as well

set_blackbox ("memory control", "-hier");
set_blackbox ("DW_adder_ 123");

set_bound_opti
Set boundary optimization checking
Usage: set bound opti (Sval);

Sval: 0, disable boundary optimization checking
1, enable boundary optimization checking (default)

set_buffer

Set buffer type. The tool automatically picks one if the command is not called
Usage: set buffer (Sbuffer);

Sbuffer: Lib cell name for buffer

Examples:

set_buffer ("BUFX2") ;

set_buffer_distance
Set distance limit for inserting buffer

Usage: set buffer distance($distance val);
Sdistance val: distance to insert buffer, in um

set_check_isolation
Enable isolation cell check before change pin
Usage: set check isolation($value);

$value: 0, Disable by default
1, Enable isolation cell check

set_clock_uncertainty
Timing command. Set clock uncertainty

Usage: setgclockguncertainty($value);
$value: Uncertainty value

set_cluster_command

Set cluster command in parallel fault verification

Usage: set cluster command($cluster command);

$cluster command: Command to submit jobs to cluster computers

Examples:

#1. Set cluster command
set_cluster command ("bsub 1sf -queue");

set_cluster_timeout

Set time out for cluster command

Usage: set cluster timeout ($time_in seconds);

S$time in seconds: An integer number in seconds

Note: cluster time out number should be large than solver time out

Examples:

#1. Set solver time out to ~12 hours
set _cluster timeout (43200);
set_constraints

Set constraints for map spare cells command
Usage: set constraints(Qoptions);

@options:;
-type type constraint : Set spare cell type constraint, type constraint is a string
listing spare cells separated by ',', get spare cells should not be used if -type is present
-num num constraint : Set spare cell number constraint, num constraint is a string

in the format of 'mux<16,nand<18'
-type limit limit string : Set cell type limit to be less than a number, for example A9TR type less than 10, 'A9TR<10'

All constraints is separated by ',' in the format of 'X8B<9,X0P5A<1’'
Note: The number constraint only controls the number of spare types to be used. The spare gates list should have
'nand/and', 'nor/or' and 'inv' types of leaf cells for synthesis mapping, and have spare flops for direct mapping, 'mux' is optional.

If used with get spare cells command, this command should be used after get spare cells, check example #3

Examples:

© 2025 NanDigits Design Automation All Rights Reserved. Page 71

GOF User Manual

#1. Use less than 16 'mux' and less than 18 'nand' spare gates in map spare cells
get spare cells("u Spare*/*spr gate*");

set constraints('-num', 'mux<l6,nand<18');

map spare cells;

#2. Use NAD2X1 NOR2X1 INVX1l and MUX2X1 as spare type gates
set constraints('-type', 'NAND2X1,NOR2X1,INVX1l,MUX2X1");
map spare cells;

#3. Set constraint after spare list created

get_spare cells("u Spare*/*spr gate*");

set_constraints('-num', 'and<l'); # So that no AND spare gate will be used
map_spare_cells;

#4. Set type limit after spare list created
get_spare cells("u Spare*/*spr gate*");
set_constraints('-type limit', 'ULVT<5,ELVT<6');
map_spare_cells;

set_cutpoint_thresh

Set Cutpoint Threshold
Usage: set cutpoint thresh($val);
Sval: Threshold value, default 100

set__cutpoint_ultra

Set the level in doing CutPoint Ultra
Usage: set cutpoint ultra($val);
$val: 0, Disable cutpoint ultra

1, Enable cutpoint ultra (default)

set_define

Set define
Usage: set define($define, $value, @options);
@Qoptions:
-imp: The define is for Implementation only
-ref: The define is for Reference only
$define: The define item
$value: The value, optional

Examples:

#1. Set define SYNTHESIS for both netlists
set define ("SYNTHESIS");

#2. Set define NO_DFT LOGIC for Reference only
set define ("NO DFT LOGIC", "-ref");

#3. Set define SIMULATION to O
set define ("SIMULATION", 0);

set_detect_points
set detect points
Usage: set_detect_points(@points, @options);
@points: Detect points
@Qoptions:
-help: Print this info
Note: The command can be run multiple times

Examples:

#1. Set data error ml as detect points
set_detect points("data error ml");

#2. Set data error ml and u cpu/err det reg as detect points

set _detect points("data error ml");
set_detect points("u_cpu/err det reg");

set_disable_cross_ hierarchy__merge
Set this variable to disable cross hierarchy register merging
Usage: set disable cross hierarchy merge (Svalue);

$value: 0, disable
1, enable. Default

set_disable_lib_cache
Disable liberty file cache
Usage: set disable 1lib cache ($value);

$value: 0, enable liberty file cache (default)
1, disable liberty file cache

set__dont_fix_modules

Set dont fix property on modules
Usage: set dont fix modules (@modules);
@module: Module names not to be fixed

Example:

#1. Set dont fix on pcie ctrl and pcie top module
set dont fix modules("pcie ctrl", "pcie top");

set_dont_use

Set dont use property on library cells

Usage: set_dont_use(@cell list);

@cell list: List of the dont use cells which is not used in automatic ECO. Wild card '*' is supported
Note: If the command is used multiple times, the latest command overrides the previous ones

Examples:

#1. Don't use these two cells
set_dont_use ("INVX30","AND2X24") ;

#2. Don't use power cell matching PWR
set_dont_use ("PWR_*");

#2. If run two times, the second one has effect, set dont use on "CINV_ *"
set_dont_use ("SINV_*");

© 2025 NanDigits Design Automation All Rights Reserved. Page 72

GOF User Manual

set dont use("CINV *");

set_eco_effort

ECO setting. Set ECO effort
Usage: setfecofeffort($effort);
Seffort: One of the three choices, high, medium and low. By default, high effort is used

Examples:

#1. Change ECO effort to medium
set_eco_effort ("medium") ;

set_eco_point_json

Set a JSON file name for saving the ECO point data.

The JSON file can be applied to another netlist ECO, so that the full LEC has no need to be rerun
Usage: set_eco_point json($json_name);

$json _name: The JSON file name

Note: This command should be run before fix design

set_equal

ECO setting. Set two points to be equivalent in the Reference and Implementation Netlists
The points can be input port, flop instance or output pin of black-box.
The point names should have 'i:' or 'r:' as prefix to indicate they are for the Reference or Implementation, or
the first point is assumed as Reference and the second Implementation.
Both of the points can be from Reference or Implementation
Usage: set equal ($ref point, $imp point);
Sref point: The point in the Reference Netlist. It should be the first argument if it doesn't have 'i:' or 'r:' as prefix
$imp point: The point in the Implementation Netlist. It should be the second argument if it doesn't have 'i:' or 'r:' as prefix

Examples:

#1. Input port 'in a' in Reference Netlist is equivalent to input port 'in b' in Implementation Netlist in top module
set top('top module');
set equal('r:in a', 'i:in b');

#2. Flop instance 'subinst/flopa reg' is equivalent to input port 'INO' in the Implementation Netlist
set top('top module');

set equal ('i:subinst/flopa reg', 'i:INO');

fix design();

set_error_out

Set error out setting

Usage: setferrorﬁout($value);

$value: 1, Abort the program when APIs have run error, default setting
0, Ignore the error and continue the program

Examples:

Program continues when there is error in change pin
set error out (0);
change pin("nonexisting instance/A", "1'b0"); # It will continue, even though nonexisting instance is not in the database

set_exit_on_error

Whether the tool should exit when the script runs into an error
Usage: set_exit on error(Serror, $bit);
Serror: Error pattern, wild card support. 'E-001', 'E-*'
$bit: 1, Exit on the error, default
0, Don't exit on the error

set_exit_on_warning

Whether the tool should exit when the script runs into a warning
Usage: set_exit on warning($warning, S$bit);
Swarning: Warning pattern, wild card support. 'W-001', 'W-*'
$bit: 1, Exit on the warning

0, Don't exit on the warning, default

set_false_path

Timing command. Set false path
Usage: set false path(Qoptions);
Qoptions:
-help: Print this information
-from: $startpoint, set false path on the starting point
-to: Sendpoint, set false path on the ending point
-through: $through point, set false path on the through point

Examples:

#1. Set false path on u_control/u_subsm/state reg * as from points
set false path("-from", "u control/u subsm/state reg *");

set_floating_as_zero

Set floating net as constant zero
Usage: set floating as zero(S$value);
$value: 0, disable floating net as constant zero
1, enable floating net as constant zero (default)

set_flop_default_eco

Set flop default eco by inverting input pin and output pin
Usage: set flop default eco($value);
$value: 1 to enable flop default eco by inverting input pin and output pin

set_flop_merge_enable

Inside module flop merge enable
Usage: set flop merge enable ($setting,@options);
$setting: 0, disable inside module flop merge

1, enable inside module flop merge (default)

set_high_effort

Set high ECO effort on modules
Usage: set_high effort (Goptions);
Qoptions:
-help: Print this information
-include module list: Only set high ECO effort on the modules listed,
module list has format of module names separated by ',', wild card is acceptable
For example, 'mem control,dma *'

© 2025 NanDigits Design Automation All Rights Reserved. Page 73

GOF User Manual

—exclude module list: Exclude high ECO effort on the modules listed
module list has format of module names separated by ',', wild card is acceptable
For example, 'mem control,dma *'

-timeout time in seconds: Set time out for each run, default to time out in 900 seconds
time in seconds is an integer indicating time out in seconds

Examples:

#1. Set ECO high effort on all modules under ECO
set high effort();

#2. Set ECO high effort on module 'mem control 1'
set_high effort('-include', 'mem control 1');

#3. Set ECO high effort on modules matching 'mem control *' and modules matching 'dma *'
set_high effort('-include', 'mem control *,dma_ *');

#4. Enable ECO high effort, but excluding module 'mem control 1 '
set_high effort('-exclude', 'mem control 1');

#5. Enable ECO high effort with time out in 600 seconds
set_high effort ('-timeout', 600);

set_ignore_instance

ECO setting. Set ignored sequential or blackbox instances in ECO
Usage: set ignore instnace(@ignored instances)
@ignored instances: Instances to be ignored in ECO, accept wild card '*'

Examples:

#1. Ignore instances matching RAND CNT reg* in ECO
set_top ('VIDEO TOP');

set _ignore instance ('RAND CNT reg*');

set_top ('DESIGN TOP');

fix design();

#2. Ignore instances matching current_state_reg* in instance u_video
set top ('DESIGN _TOP');

set_ignore instance('u_video/current_ state reg*');

fix design();

set_ignore_network

ECO setting. Set ignore network in ECO
Usage: set ignore network(@ignored nets, Qoptions)
@ignored nets: Net and its network to be ignored in ECO, accept wild card '*'
@options:
-help: Print this information
-pin: @ignored nets are in pin format, for example, 'DONT mux clk/PIN Y'

Examples:

#1. Ignore scan_en and scan_in
set ignore network('scan en*', 'scan in*');

#2. Ignore PAD PAD SCAN EN's output pin 'core' and its network
set ignore network('PAD SCAN EN/core', '-pin');

set_ignore_output

ECO setting. Set ignore output ports
Usage: set_ignore_ output (@ignored ports, @options)
@ignored ports: Output ports to be ignored, accept wild card '*'
@Qoptions:
-help: Print this information
-both: Apply to both Reference and Implementation Netlist. Enabled by default
-ref: Apply to Reference Netlist
-imp: Apply to Implementation Netlist

Examples:

#1. Ignore output ports matching *scan out* in ECO
set_top ('design_top');
set_ignore output ('*scan out*');

set_pin constant ('scan _en', 0);

fix design();

#2. Ignore output ports matching *TSTCON* in Implementation Netlist
set_top ('CHIP _TOP');
set _ignore output ('*TSTCON*', '-imp');

set_ignore_pin

set ignore on the pin of black box like memory in logic equivalence checking

Usage: set ignore pin("$cell name/Spin name");

Scell name: The black box cell name (Not instance name)

S$pin name: The cell pin name, wildcard is supported, for example "TM*" to match TM[0] TM[1]

Examples:
set ignore pin("TSMC MEM 256X29/TCEN");
set ignore pin ("TSMC MEM 256X29/TA*");

set_inc_dirs

Set include directories
Usage: set_inc dirs(@include directory list, Qoptions);
@options:
-imp: The include directories are for Implementation only
-ref: The include directories are for Reference only
@include directory list: List of all include directories

Examples:

#1. Set include directories for Reference only
set _inc dirs("/project/nd900/vlib/include", "/project/nd900/IPS/include", "-ref");

#2. Set include directories for Implementation only
set _inc dirs("/project/nd900/vlib/include", "/project/nd900/IPS/include", "-imp");

#3. Set include directories for both

set_inc dirs("/project/nd900/vlib/include", "/project/nd900/IPS/include");
set_initial_trans

Timing command. Set initial transition for clock

Usage: set_initial trans(S$Svalue);
$value: Transition value

© 2025 NanDigits Design Automation All Rights Reserved. Page 74

GOF User Manual

set_input_delay

Timing command. Set input delay
Usage: set_input delay($port name, $delay value, @options);
@Qoptions:

-clock clock name: Specifies the clock that relates to the delay
$port name: Input port name, accept wild card '*'
Sdelay value: Delay value in ns

Examples:

#1. Set input port to all APB bus input
set _input delay("port apb *"", 0.1);

set_input_transition

Timing command. Set input transition to all input ports
Usage: set input transition($value);
$value: Transition value

set_inside_mod

Set fix scope inside the current module

If set to 1, the tool only use resource inside the current module to fix the non-eq points.
By default, it is disabled.

Usage: set inside mod($val);

Sval: 0, disable 1, enable

set_inst

Set the current instance, alias of 'current instance'
Usage: set inst ($instance);
S$instance: Set $instance as the current instance.
If the argument is missing, return the current setting
".." set to parent, "~" set to the most top level module
Note: It can be reset to the root top module by 'undo eco'. It has same effect of 'set top' and 'current design'

set_inv

ECO setting. Set two points to be inverted in the Reference and Implementation Netlists
The points can be input port, flop instance or black-box's output pin.
The point names should have 'i:' or 'r:' as prefix to indicate they are for Reference or Implementation, or
the first point is assumed as Reference and the second Implementation.
Both of the points can be from Reference or Implementation by using 'i:
Usage: set_inv(Sref point, $imp point);
S$ref point: The point in the Reference Netlist. It should be the first argument if it doesn't have 'i:' or 'r:' as prefix
$imp point: The point in the Implementation Netlist. It should be the second argument if it doesn't have 'i:' or 'r:' as prefix

or 'r:' on both point names.

Examples:

#1. Input port 'in a' in the Reference Netlist is inverted to input port 'in_a BAR' in the Implementation Netlist in top module
set_top ('top module');
set_inv('r:in a', 'i:in a BAR');

set_invert

Set invert type. The tool automatically picks one if the command is not called
Usage: set invert($invert);
$invert: Lib cell name for invert

Examples:

set_invert ("INVX2");

set_keep_format

Keep the format of the original verilog when ECO is done (Keep original netlist format)
Usage: set keep format ($value);
$value: 0, disable format keeping (default)

1, enable format keeping.

set_keep_tree

Set keeping buffer tree, so that buffer tree won't be removed in ECO
By default , it is disabled.

Usage: setgkeepftree($val);

Sval: 0, disable 1, enable

set_keypoints_rep_in_ref

ECO setting. Replace keypoints naming in Reference Netlist.

Keypoints naming matching the first argument, and replace the matched string by the second argument
Usage: set keypoints rep in ref (Smatch string, Srep string);

Smatch string: Keypoints naming matching this string

Srep_string: To replace the matched string by this string

Note: The command only apply to Reference Netlist
Examples:

#1. Replace the last ' ' in Keypoints naming in Reference Netlist
set_keypoints rep in ref('_$', '');

#2. Replace the last '0' in Keypoints naming in Reference Netlist
set_keypoints rep in ref('0$', '');

set_leaf

Set a hierarchical module to be leaf. Useful to stub hierarchical instances
Usage: set leaf($module name, S$value);
S$module name: The module to be set leaf or not set to leaf
Svalue: 1 or larger than 1, set the module as leaf. 0 not set to leaf.
If $value is not present, the default value is 1.

Examples:
set_leaf ($module_a); # set Smodule a as a leaf

set_leaf ($module_a, 1); # same as the above
set_leaf (Smodule_a, 0); # remove the leaf setting

set_log_file
Set log file name

Usage: set log file($filename);
$filename: Log file name

© 2025 NanDigits Design Automation All Rights Reserved. Page 75

GOF User Manual

set_low_effort

Set low ECO effort to speed up ECO process
Usage: set low _effort(Qoptions);
Qoptions:

-help: Print this information

Examples:

#1. Set ECO low effort on all modules under ECO
set low effort();

set_mapped_point

ECO setting. Set two points mapped in Reference and Implementation Netlists
Usage: set mapped point ($ref point, $imp point, Qoptions);
Sref point: Register instance or output port in Reference Netlist
$imp point: Register instance or output port in Implementation Netlist
@options:

-invert: The two points are expected to be inverted

Examples:

#1. Two outputs are mapped key points
set mapped point ("ref sync", "imp sync");

set_mapping_method

LEC setting. Detecting flop phase inversion.
Usage: set mapping method("-phase");

set_max_lines

Set max output lines
Usage: set _max_lines (S$Snum);
$num: New max lines number. Default to be 500

set_max_loop

Setup max loop, the tool stops logic optimization when max loop number is reached
Usage: set max_loop ($value);

Svalue: Setup BDD threshold, default 40000

set_mod2mod

Set reference module mapping to implementation module
Usage: set mod2mod ($refmod, $impmod) ;
Srefmod: The reference module name
$impmod: The implementation module name
Note:
The command is used when reference netlist is partial

set_mu

MU configuration, setup MU value for BDD threshold
Usage: set mu($value);
Svalue: Setup BDD threshold, default 12000

set_multibit_blasting

Set blasting on multibit flops
set multibit blasting($enable);
Senable: 0, disable multibit flop blasting
1, enable multibit flop blasting (default)
Note: This command should run before read design. In DFT DRC, the feature should be disabled by set multibit blasting(0);

Examples:

set multibit blasting(1l);
read design("-ref", "ref.v");
read design("-imp", "imp.v");

set_multibit_output

Set multibit flops output in ECO results

set multibit output ($enable);

Senable: 0, disable multibit flops output (default)
1, enable multibit flops output

Examples:

set_multibit output (1);
write verilog("eco result.v");

set_net_constant

Set net to a constant value in DFT constraint
Usage: set _net constant (Snet, S$value, @options);
$net: Net name. It can be a bus.
Svalue: Decimal value that the pin should be set
Qoptions:
-help: Print this information
-both: Set the net to the constant value on both Implementation and Reference. Enabled by default.
-imp: Set the net to the constant only on Implementation
-ref: Set the net to the constant only on Reference

Examples:

#1. Set all test net to zero in Implementation Netlist
set_top ('DESIGN_TOP DFT WRAPPER');

set _net constant('all test', 0, '-imp');

set _ignore output ('PIN EDT CHANNEL OUT*', '-imp');

fix design();

set_no_patch_opt

Disable patch optimization

Usage: set no patch opt($value);

$value: 0, Enable patch optimization in fix design (default).
1, Disable patch optimization in fix design

set_noexact_pin_match

ECO setting. Don't match some special pins
These pins normally don't exist in RTL but added by Synthesis, DFT or other tools.

© 2025 NanDigits Design Automation All Rights Reserved. Page 76

GOF User Manual

Usage: set noexact pin match ($pattern);
Spattern: Pin pattern in regular expression, '\bIN\d+\b'

Note: The command only apply to Reference Netlist. It should be run before reading reference netlist
Examples:

#1. Don't match pins like INO, IN1, IN2
set_noexact pin match ('\bIN\d+\b");
read design('-ref', 'ref netlist.v');

set_observe_points

set observe points
Usage: set observe points (@points, @options);
@points: Observation points
@Qoptions:
-help: Print this info
—-comb: The points are input pins of combinational gates

Note: The command can be run multiple times
Examples:

#1. Set data out ml bus as observe points
set_observe points("data out ml*");

#2. Set data out ml bus and u cpu/valid status regas observe points
set_observe points("data out ml*");
set_observe points("u cpu/valid status reg");

set_one_fault

Set one fault for verify state command
Usage: set one fault($fault name);
$fault name: Fault name

Examples:

#1. Set stuck-at 0 fault to a NAND gate input
set_one_fault ("u_top/u_ctrl/U123/A:SA0");

set_only_use

In optimize patch, Only use these cells listed
Usage: set only use(@cell list);
@cell list: List of the cells that are used in optimize patch. Wild card '*' is supported

Examples:

#1. Use these two cells
set only use ("INVX30","AND2X24");

#2. Use any type of invert and nand gate
set only use ("INV*", "NAND*");

set_output_delay

Timing command. Set output delay
Usage: set output_delay($port_name, $delay value, @options);
@Qoptions:

-clock clock name: Specifies the clock that relates to the delay
S$port_name: Output port name, accept wild card '*'
$delay value: Delay value in ns

Examples:

#1. Set output delay to all memory output
set_output delay("mem out *"", 2.1);

set_output_load

Timing command. Set output load to all output ports
Usage: set output load($value);
Svalue: Output load value

set_phase_adjust_en

Enable phase adjusting
Usage: set phase adjust_en($val);
$val: 0, disable phase adjusting
1, enable phase adjusting (default)

set_phase_inv

ECO setting. Set flops invert phase in the Reference and Implementation Netlists
Usage: set phase inv($flopl, $flop2 ...);
$flopl, $flop2: Flop instance list in full path

Examples:

#1. Set flop instance u ip/u control/a reg to have invert phase
set top('top module');
set_phase_inv('u_ip/u_control/a reg');

#2. Set flop instances u ip/u control/a reg and u ip/u control b/b reg to have invert phase
set top('top module');
set_phase_inv('u_ip/u control/a reg', 'u ip/u control b/b reg');

set_physical_aware

Enable physical aware ECO
Usage: set physical aware ($value);
S$value: 0, disable physical aware ECO
1, enable physical aware ECO (default)

set_pin_constant

Set pin to a constant value in DFT constraint
Usage: set pin constant (Spin, $value, @options);
S$pin: Input pin name. It can be a bus, or an instance pin.
Svalue: Decimal value that the pin should be set
Qoptions:
-help: Print this information
-both: Set the pin to the constant value on both Implementation and Reference. Enabled by default.

© 2025 NanDigits Design Automation All Rights Reserved. Page 77

GOF User Manual

-imp: Set the pin to the constant only on Implementation
-ref: Set the pin to the constant only on Reference

Examples:

#1. Set test scan test pin to zero
set_top ('DESING TOP');

set pin constant ('PIN SCAN TEST', 0);
set ignore output ('PIN SCAN SO*');
fix design();

#2. Set one bus port to all ones on Implementation
set_top ('DESING_TOP'");

set_pin_constant ('PIN_CONTROL[3:0]', 15, '-imp');
fix design();

set_power

Set power pins connections for leaf cell

Usage: set power ($leaf cell, $connections);

$leaf cell: Leaf cell name. Like NAND2X4

Sconnections: Power pins connections, like ".GND(GND),.VDD(VDD)"

set_preserve

Set preserve property on instances. The tool does not remove them in ECO
Usage: set preserve (@instances, @options);
@Qoptions:
-hier: Set preserve globally, the specified instances will be preserved in all modules
@instances: Instances to be preserved in the current module
Accept wild card '*'

Examples:

#1. Preserver two instances in mcu_top
push_top ("mcu_top") ;

set preserve ("u_donttouch0", "u 1000");
pop_top;

#2. Preserve all DONT* instances in abc_mod
push_top ("abc mod") ;

set preserve ("DONT*") ;

pop_top;

#3. Preserve clock tree * instance in all modules, push top/set top are ignored
set preserve("clock tree *", "-hier");

set_quiet

Run script in quiet mode
Usage: set quiet;

set_recovery_distance
Set distance limit for gates recovery in ECO

Usage: set recovery distance ($distance);
$distance: Distance to recover deleted gate, in unit of 'um'

set_remove_undsc_in_ref

ECO setting. Remove last ' ' in flop instance in Reference Netlist

It's a special command to remove the last ' ' in flop instance in Reference Netlist
to match Implementation Netlist.

Usage: set _remove undsc_in_ref (Svalue);

Svalue: 1, enable. 0, disable

Note: The command only apply to Reference Netlist

set_rtl_eco_full_hier_fan
RTL ECO has full hierarchical fanout
Usage: set _rtl eco full hier fan($val);

Svalue: 0, disable full hierarchical fanout (default)
1, enable full hierarchical fanout

set_save_mapped_instance

Dump key points mapping information for LEC
Usage: set save mapped instance(1);

Note: The command should be run before fix design
Example:

set save mapped instance(1);
fix design();

set_scan_pairs

Set scan output ports, the command is used with dft drc

Usage: set_scan pairs(@scan_in out pairs);

@scan_in out_pairs: List of pairs of scan in and scan out pins
Note: The command can run multiple times

Examples:

#1. Set all scan si[100:0] scan so[100:0] as scan in/out ports

set_top ("THE DESIGN") ;
for (my $1=0;$1<=100;$1i++) {

set scan pairs("scan si[$i]", "scan so[$i]");
}
set top ("THE DFT TOP"); # THE DFT TOP has THE DESIGN as an instance
dft drc;

#2. Check DFT DRC on a_scan si[6]/a_scan so[6] and b_scan in[7]/b_scan out[7]
set_scan pairs("a_scan_si[6]", "a scan_so[6]", "b scan_in[7]", "b_scan_out[7]");
dft_drc;

set_sn_vs_rn
Check set pin and reset pin priority
Usage: set_sn vs_rn($val);

Sval: 1, Check set/reset pins priority, default
0, Don't check set/reset pins priority

set_solver_timeout

© 2025 NanDigits Design Automation All Rights Reserved. Page 78

GOF User Manual

Set time out for solver
Usage: set solver timeout ($time in seconds);
Stime in seconds: An integer number in seconds

Examples:

#1. Set solver time out to ~10 hours
set solver timeout (36000);

set_tiehi_net

Set tiehi net name, it is used if tiehi net is needed in ECO
Usage: set_tiehi net (Snetname);
Snetname: Tiehi net name, default to be 1'bl

Note: If Tie High Cell is preferred, the value should be set to empty
set_tiehi net ("");

set_tielo_net

Set tielo net name, it is used if tielo net is needed in ECO
Usage: set_tielo net (Snetname) ;
Snetname: Tielo net name, default to be 1'b0

Note: If Tie Low Cell is preferred, the value should be set to empty
set_tielo _net ("");

Examples:

set_tielo_net (" logicO ")

set _tielo net ("TIE HILO TIELO NET");
set_tielo net(""); # Use Tie Cell

set_time_frame_limit

GOF Formal only. Set limitation for time frame in fault verification, default 35
Usage: set time frame limit(S$frame number);
$frame number: An integer number

Examples:

#1. Set time frame limit to 256
set time frame limit (256);

set_top

Set the current top level module
Usage: set top ($module);
$module: Set $module as the current top level module.
If the argument is missing, return the current setting
".." set to the parent module, "~" set to the most top level module
Note: It can be reset to the root top module by 'undo eco’

set_top_ref

Set the top level module for the Reference design

Usage set_top_ ref (Smodule) ;

Notes:

Set top module for the Reference Netlist due to unmatched hierarchy.

set_tree

Set the current tree, if there are more than one sets of databases
Usage: set_tree(Stree);
Stree: It can be Top, Top _ref, Top 1 or Top 2

Top: The Implementation Netlist

Top_ref: The Reference Netlist

Top_1l: The netlist loaded by -Top 1 option

Top_2: The netlist loaded by -Top 2 option

If $tree is not defined, the current database name is returned

Note: Implementation tree 'Top' has aliases of 'imp', 'IMP'
Reference tree 'Top ref' has aliases of 'ref', 'REF'

Examples:
set_tree("Top"); # Set to the Implementation Netlist tree

set tree("Top ref"); # Set to the Reference Netlist tree
set_tree(); # Return the current database name. E.G. 'Top ref'

set_user_match

Set match between multi-bit flops to multi-bit flops, and between multi-bit flops to single bit flop
Usage: set user match($instl, $inst2);
$instl: The first flop instance, in the format of 'r:reg 1 OA/*dff.00.0*' if it is multibit
or 'r:reg 1A' if it is single bit
$inst2: The second flop instance, in the format of 'i:reg 1 OA/*dff.00.0*' if it is multibit
or 'i:reg 1A' if it is single bit

Examples:

set user match('r:reg 1 OA/*dff.00.0*', 'i:reg OA');

set user match('r:reg 1 OA/*dff.00.1*', 'i:reg 1A');

set user match('r:reg 2 1A/*dff.00.1*', 'i:reg 1 OA/*dff.00.0*');

Note: It is recommended to use SVF file, guide multibit in SVF file has the same effect of this command

set_verbose
Run script in verbose mode

Usage: set verbose (Snum) ;
S$num: Verbose level, higher to be more verbose

set_wireload

Command for Timing Report. Set wireload for one liberty library
Usage: set wireload($library, $wireload);

$library: Library name

Swireload: Wireload name

Examples:

#1. Set wireload for one library
set_wireload ("TMC18VGB1S5ELV16S_1P8V_25C", "zero-wire-load-model");

set_write_verilog_remove_backslash

© 2025 NanDigits Design Automation All Rights Reserved. Page 79

GOF User Manual

Enable write out verilog with backslash removal
Usage: set write verilog remove backslash($value);
$value: 0, Disable by default

1, Enable backslash removal in write verilog

set_write_verilog_uniquify

Enable write out verilog in uniquified mode
Usage: set write verilog uniquify($value);
$value: 0, Disable by default

1, Enable uniquify mode

set_xm_flop_merge_enable

Cross module flop mapping and merging enable.
Usage: set_xm flop merge enable ($setting,@options);
$setting: 0, disable cross module flop merge (default)
1, enable cross module flop merge
Qoptions:
-parallel: Run merge process in parallel
Note: Flop merge inside module command set flop merge enable is enabled by default

setup_eco

ECO command. Setup ECO
Usage: setup eco($eco name, @options);
$eco_name: ECO name, like eco01234
@Qoptions:
-help: Print this information.
—-comments comments: Comments to appear at the beginning of ECO netlist.

Examples:

#1. Setup ECO name
setup _eco('ecol234")

#2. Setup ECO name with comments
setup eco('ecol234', '-comments', 'Fix abc state state machine');

source

Run Netlist processing script.
Usage: source($script7name);

Examples:
source ("eco2.pl") ;

Note:
It has the same behavior as 'run' command

spec_to_rtl

Spec to RTL generation by AI scoring method
Usage spec to rtl($spec);
$spec: Mark Down format spec file

start_gui

Start GUI windows
Usage: start gui (Goptions);
@Qoptions:
—-source: Read in Reference RTL file if it exists
-noblock: The process is not blocked by start gui, by default the process is blocked by the GUI window

stitch_scan_chain

ECO command. Stitch scan chain
Usage: stitch scan chain(@options);
Qoptions:
-to $flop inst: Stitch all new flops into the flop inst or stitch each module's new flops into one flop in this module
Note: If -to option doesn't exist, the new flops in each module are connected up in one chain and stitched into one existing scan flop

Examples:
stitch scan chain("-to", "abc reg"); # Insert new flops' scan chain into the existing flop 'abc reg'
stitch scan_chain(); # Stitch the new flops into local scan chains

suppress_ errors
Suppress error messages

Usage: suppress_errors (@messages)
@messages: Error messages. 'E-001', 'E-132'

suppress_warnings

Suppress warning messages
Usage: suppress warnings (@messages)

@messages: Warning messages. 'W-001', 'W-002'
Examples:

suppress warnings ("W-001", "W-002", "W-003"); # Suppress these three warnings
swap_inst

ECO command. Swap two instances with same input/output pins.
Usage: swap inst ($instl, $inst2);

$instl, $inst2: Swap these two instances.

Note: $instl and $inst2 should have the same input/output pins.

Examples:
swap_ inst ("sparel/spr and0", "spare2/spr andl");
undo_eco

ECO command. Undo eco operations, restore the database to the original state.
Usage: undo_eco();

verify_faults

GOF Formal only. Verify fault in stuck-0 or stuck-1 mode
Usage: my $status = verify faults(Sone_fault, @options);
Sone_fault: Optional, to test one fault only
Qoptions:

-help: Print this info

-rough: Calculate SPFM/LFM only by structural COI analysis

© 2025 NanDigits Design Automation All Rights Reserved. Page 80

GOF User Manual

-full: Run full formal process in calculating SPFM/LFM
-vcd ved file name: Dump the sequence to the VCD file when Sone fault is defined
$status: Return 1 if a sequence exists

Examples:

#1. Check all fault in the whole design
verify faults("-full");

#2. Check one fault stuck-0 and dump the sequence to the VCD file
verify faults("u master/U12/Y:0", "-vcd", "seq ul2.vecd");

verify_state

GOF Formal only. Verify if a sequence exists to set the signal
Usage: my $status = verify state(@sig_seq, @options);
@sig_seq: Signals and its value
Qoptions:
-help: Print this info
—-or: The signals are 'or' relationship, default 'and' relationship
-ved ved_file name: Dump the sequence to the VCD file when Sone fault is defined
$status: Return 1 if a sequence exists

Examples:

#1. Check one instance input A can be set to 0, dump to VCD file dump seq.vcd
verify state("u_spi/U10/A:0", "-vcd", "dump seq.vcd");

write_compare_points

Write all compare points to a report file
Usage: write compare points($file name, @options);
$file name: The report file name
Qoptions:
-all: Include name matching instances

Examples:

write Compare points ("compare points.rep"); # Write compare points with different naming
write Compare points("-all", "all compare points.rep"); # Write all compare points
write_dcsh

ECO command. Write ECO result in Design Compiler dcsh script format
Usage: write dcsh($dc script name);
$dc_script name: Synopsys Design Compiler dcsh script name.

Examples:

write dcsh("ecol2345.dcsh");

write_formality_ help_files

Write formality help files including mapped instance list and modified netlist files if necessary
Usage: write formality help files(Shelp name);

Shelp name: Help name which can have directory specified

Note:

Examples:

#1. Write out Formality help files into directory fm help with the base name eco 1225
write formality help files("fm help/eco_1225");

write_perl
ECO command to write ECO result in Perl script
Usage: write perl(Seco script_name);

$eco_script name: ECO script name
Note: The command can be used after 'fix design' API. Detail ECO operations are written out.

write_soce
ECO command. Write ECO result in Cadence SOC Encounter script format
Usage: write soce($soc_encounter script name, @options);
$soc_encounter script name: Cadence SOC Encounter script name.
Qoptions:

-typel: Alternate SOC Encounter script type
Examples:

write soce("ecol2345.soce");
write_spare_file

ECO command. Write spare cells list to a file
Usage: write spare file($filename);

$filename: Spare cells file name to be written out

Note: Any used spare cell has '#' in the start of the line

write_tcl

ECO command to write ECO result in Design Compiler tcl script format
Usage: write_tcl($tcl_script_name);

$tcl script name: Synopsys Design Compiler tcl script name.

Examples:

write tcl("ecol2345.tcl");

write_verilog

ECO command to write ECO result in Verilog netlist
Usage: write verilog($verilog file, Qoptions);
@Qoptions:
-help: Print this information
-all: Keep the modules in the netlist file even they are not the sub-modules of the top module
S$verilog file: The Verilog netlist file name, should be different from the existing Implementation Netlist file name.

Note: When the Implementation design is read in by multiple netlist files, set top command should be used to
make the correct file saved

Examples:

#1. Write out ECOed netlist to imp eco.v

© 2025 NanDigits Design Automation All Rights Reserved. Page 81

GOF User Manual

read design("-ref", "reference.v");

read design("-imp", "implementation.v");
fix design;

write verilog ("imp eco.v");

#2. The design is read in by command line 'gof -1lib tsmc.lib ethernet top.v'
After ECO, to write ECO netlist use command
write verilog("ethernet top eco.v");

#3. The design is read in by multiple netlist files in command line,
'gof -1lib tsmc.lib mem control.v dsp.v ethernet top.v'

The ECO is done on 'mem control' module, to save the netlist
set_top ("mem_control");

write verilog("mem control eco.v");

9 Appendix B
9.1 GOF Command Options

Usage: gof [options] netlists

netlists
Netlist files to be loaded. There can be multiple netlist files listed,
if the design has more than one netlist files.

options:

-h
Print out this info.

-1lib
Provides liberty file (technology library) .
There can be multiple -1lib options,
if the design has more than one technology library files.

-V
Specifies simulation library file name which has verilog definition
for leaf gates, like AND2X4.
There can be multiple -v options, if the design has more than one simulation library.
-1lib should be used unless the leaf cells defined in simulation library are true black box

-vmacro
For ECO purpose. Each module in the file appears as leaf cell, and it can be
added like other leaf cell in ECO. When write out ECO netlist, the file content appears
in the beginning of ECO netlist. And the ECO cell is added as a hierarchical sub-block.

—run
Provides ECO script name. The script is compatible with Perl syntax.
GOF stays in shell mode when the script finishes.

-shell
Runs in text mode with shell prompt, GofCall APIs can be run in interactive mode in shell.

-0
Specifies log file name, default gatesof.log.

-Top 1
Specifies another netlist files to build Top 1 tree. The hierarchy will shown up in left
side of GofViewer window. -Top 2 -Top 3 ... can be used to load more netlist files.
Note, when this option takes all netlist files followed, so the main netlist files
should appear before this option. For example,
'gof -1lib tsmc.lib imp netlistl imp netlist2 -Top 1 ref netlistl ref netlist2'
will create two trees in the left side of GofViewer window.
While, 'gof -1lib tsmc.lib -Top 1 imp netlistl imp netlist2 ref netlistl ref netlist2'
will build only one tree, since Top 1 option takes up all of the netlist files,
the main tree is gone.

-ref
Specifies reference netlist files.
+define+PARAMETERO+PARAMETERL
Defines PARAMETERO PARAMETERI.

-id
Specifies design name. The name appears on GUI Window tile bar.

-def
Specifies DEF file (Design Exchange Format) .
There can be multiple -def options,
if the design has more than one def files.

-defverbose
Reports all def error, otherwise only first 10 are reported.

-lef
Specifies Library Exchange Format file.
There can be multiple -lef options,
if the design has more than one lef files.

-sparelist
Specifies spare cells list file.

-parallel
Define parallel processing CPU Core number.
Set the number to zero to disable parallel processing.
By default, the tool picks a optimal number according to the host CPU setting.

=i
Loads all the files and options in the file list file

-session
Loads saved session

-ved
Specifies VCD file for schematic annotation

-textbutton
Text mode button instead of image mode button in ECO operations

-version
Prints out current version and exits.

-licquery
Queries license usage.

9.2 Command line Examples

gof -1ib tsmc.lib soc.v
Loads one netlist file 'soc.v' and one technology library, 'tsmc.lib'

© 2025 NanDigits Design Automation All Rights Reserved. Page 82

GOF User Manual

gof -1ib tsmc std.lib -1ib tsmc io.lib top.v part0.v partl.v
Loads three netlists, top.v, part0.v and partl.v, two liberty files
tsmc std.lib, IO cells, tsmc io.lib
gof —1ib tsmc std.lib -1ib tsmc io.lib -v analog models.v top.v part0.v partl.v
Loads analog cells in verilog library file analog models.v all analog cells are black boxes.
gof -1ib tsmc std.lib -1ib tsmc io.lib -vn macros.v -v analog models.v top.v part0.v partl.v
Loads macros.v as macro cell
gof -1ib tsmc.lib -def soc.def.gz —lef libcell.lef soc.v
Loads Design Exchange Format file soc.def.gz. And library exchange format file for layout view usage.
gof -1ib tsmc.lib soc.v -run scripts.pl
Processes netlist with scripts.pl. Scripts.pl is in Perl syntax and support GOF APIs
gof -1ib tsmc.lib top.v netlist.vg -ved top.ved
Loads VCD file for schematic annotation.
gof —-1ib tsmc.lib imp netlist.v -ref ref netlist.v
Loads both implementation netlist and reference netlist, can be used in netlist comparison.

10 Appendix C

10.1 Fatal codes

F-000: License failed

F-001: Time out in adding ports in hierarchies
F-002: Empty ID for nets

F-003: Pin connections processing fatal error
F-004: Net id not defined

F-005: Net is not in EpHash

F-006: Instance has not been mapped position in AUTO ECO
F-007: Instance has no name mapping in AUTO ECO
F-008: No net found for ECO instance/pin

F-009: Unknown connection type of instance/pin in AUTO ECO
F-010: Net has no name mapping in AUTO ECO

F-011: Failed to initialize database

F-012: MCell get sub-chains error

F-013: No tree has been defined

F-014: No ID for leaf cell pin

F-015: Undefined subroutine in GofCall script
F-016: Global symbol requires explicit package name
F-017: Syntax Error

F-018: Illegal Division by zero

F-019: Bare word not allowed

F-020: Can't locate Perl module

F-021: File size too large for evaluation mode
F-022: Internal error in make miss

10.2 Error codes

E-001: Reference netlist has not been loaded

E-002: DEF file has missing section

E-003: Command line needs an option for a switch
E-004: Liberty files have not been loaded

E-005: Library cell doesn't exist

E-006: Delete middle bit in a bus

E-007: Unknown command line option

E-008: Win32 doesn't support .gz file

E-009: DEF file doesn't have DIEAREA item

E-010: Files loading sequence

E-011: Instance or pin or port can't be found in module
E-012: Net doesn't exists in module

E-013: Tree name doesn't exist

E-014: Hierarchical module name doesn't exist

E-015: Miss argument

E-016: Module stack is empty, too many pop top
E-017: 'instance/pin' has wrong format

E-018: Instance or module doesn't exist

E-019: Instance doesn't have pin

E-020: Item is a black box

E-021: Missing DEF file

E-022: No reference for instance

E-023: 'leaf/pin' doesn't exist

E-024: Power connection format is wrong

E-025: Spare cell pattern is not specified

E-026: Spare list file doesn't exist

E-027: 'get spare cells' run before 'map spare cells'
E-028: 'instance/pin' is floating

E-029: New instance conflicts with existing one
E-030: Specify leaf:num in more than one output leaf
E-031: Instance should be leaf in change gate

E-032: Syntax error in pin mapping

E-033: The new gate type should be different from the old one in change gate
E-034: Leaf cell doesn't exist in libraries

E-035: Net doesn't have a driver

E-036: Instance name has special character that the tool doesn't support
E-037: Wrong argument in ECO APIs

E-038: Net has multiple drivers

E-039: Not a port

E-040: New port conflicts with existing one

E-041: Single bit wire can't be expanded to a bus
E-042: New port direction conflicts with existing one
E-043: Commands loading sequence

E-044: Nets in one ECO command should be in the same hierarchy
E-045: Missing scan control pins

E-046: Reference netlist is not loaded

E-047: Fail to open file for write

E-048: Fail to open file for read

E-049: Unable to recognize file format

E-050: Command line option needs a value

E-051: Path doesn't exist

E-052: Leaf should have only one output pin

E-053: New net conflicts with existing one

E-054: Instance ECO result not consistent

E-056: Net has no driver

E-057: Net has invalid BDD

E-059: Not enough resource to run synthesis

E-060: Not valid patch file

E-061: No spare cell for one gate type

E-062: Output port is driven by input port

E-063: Reference register doesn't exist in implementation netlist
E-064: No inverter in the database

E-067: Should add instance into fix logic argument
E-071: Port doesn't exist in hierarchical instance

© 2025 NanDigits Design Automation All Rights Reserved. Page 83

GOF User Manual

E-072: Black box instance doesn't exist in implementation netlist in AUTO ECO
E-076: Spare cells list file has Wrong format

E-080: GOF KEY FILE variable has not been defined
E-081: Use '-run' to run Perl script

E-082: Gtech file doesn't exist

E-085: Syntax error in netlist

E-101: No hierarchical path is used

E-102: Interrupt GUI operation by user

E-103: 'read def' should be run before 'get spare cells'
E-105: Load specific file without the right option
E-106: Source ID can't be deleted

E-109: Found combinational loop

E-110: Implementation Netlist has not been loaded
E-112: Can't find pin direction

10.3 Warning codes

W-001: Bypass already loaded file

W-002: DEF has some section missing

W-003: DEF has module not resolved

W-004: No ECO pin specified for ECO instance

W-005: Not enough spare cells

W-006: DEF file not loaded

W-007: Leaf cell doesn't have timing table

W-023: 'leaf/pin' doesn't exist

W-028: 'instance/pin' is floating

W-038: Net has multiple drivers

W-054: Instance ECO result not consistent

W-055: Net ECO result not consistent

W-056: Net is not driven

W-060: Invalid patch file

W-061: No spare cell for one gate type

W-065: Tie floating input pin to zero

W-066: New port created in AUTO ECO

W-068: Hierarchical cell is created in AUTO ECO
W-069: Set don't touch Warning

W-070: Can't find repeaters

W-073: 'instance/pin' is inverted but being forced to be equal by user
W-074: 'instance/pin' is forced to be inverted by user
W-075: Net returned wrong BDD

W-077: No size information for a leaf

W-078: Module is redefined

W-079: Instance can't be resolved in GTECH

W-080: Leaf cell can't be resolved in module

W-083: Can't read MAC Address

W-084: Sub-module can't be resolved

W-086: Include file doesn't exist

W-087: Bit-width mismatch in instantiation

W-088: Zero fanin endpoint

W-089: Can't find ECO instance position

W-090: Empty instance name in patch file

W-091: ECO net has no fanout

W-092: New input port created and needs to be connected
W-093: New ID created for end point

W-094: Can't detect port phase in module

W-095: Port or net is forced to be equal by user
W-096: Port and net has mismatching bit-width
W-097: Schematic only feature

W-098: Force to use 1'b0/1'bl in AUTO ECO

W-099: Can't fix timing, since lacking valid points
W-100: No 1lib name for a leaf cell

W-104: Module is defined as leaf cell but has definition in the netlist
W-107: Module is set as a leaf by user

W-108: Module is not uniquified

W-111: No need to set path prefix

W-112: Can't find pin direction

W-113: Different types of flops in IMP and REF

10.4 GUI warning codes

GW-001: Don't connect net to a new created connector
GW-002: Don't connect two ECO connectors

GW-003: Don't drive an output port by a cell in different hierarchy in ECO
GW-004: Forward trace a port's driver before insertion
GW-005: Net doesn't exist in design

GW-006: Can't load cell to schematic

GW-007: Trace output pin before delete the gate

GW-008: Can't delete a gate which drives an output port
GW-009: Can't delete a wire which drives an output port
GW-010: Need select a gate to do a operation

GW-011: Can't change ECO gate size

GW-012: No larger size gate in library

GW-013: No smaller size gate in library

GW-014: Connect other side of ECO port first

GW-015: Path is not allowed in port connection

GW-016: Can't disable ECO mode

GW-017: No more ECO operations in undo

GW-018: Need select a pin to do listing endpoints

© 2025 NanDigits Design Automation All Rights Reserved. Page 84

	Table of Contents
	1 Introduction
	1.1 Download and Install GOF
	1.2 License and Setup

	2 GOF ECO: Functional ECO Tool
	2.1 Netlist ECO Solutions
	2.2 Automatic Full-Layers Functional ECO Flow
	2.2.1 Files and data requirements in automatic functional ECO
	2.2.2 Steps to do automatic functional ECO
	2.2.3 Automatic Functional ECO example script
	2.2.4 Run and debug in automatic functional ECO
	2.2.5 Synthesize sub-modules only
	2.2.6 SVF files support
	2.2.7 Multibit flops in ECO
	2.2.8 ECO Retargeting
	2.2.9 DFT Constraints
	2.2.10 DFT Design Rule Checker
	2.2.11 No Exact Pin Match
	2.2.12 Flip-flop Phase Inverted
	2.2.13 Tie High Tie Low nets
	2.2.14 Stitch new flops into scan chain
	2.2.15 Add a new module
	2.2.16 Note in RTL modification and re-synthesis
	2.2.16.1 Keep sequential signal name
	2.2.16.2 Use the same synthesis constraints

	2.2.17 Debug non-equivalence in large ECO
	2.2.18 Check design after ECO
	2.2.19 Formality help files generation
	2.2.20 RTL Guided ECO Flow
	2.2.21 Internal RTL to RTL Guidance
	2.2.21.1 Files and data requirements in RTL guided ECO
	2.2.21.2 Steps to do RTL guided ECO
	2.2.21.3 RTL guided ECO example script
	2.2.21.4 Synthesize Reference RTL to Reference Netlist

	2.2.22 Third Party RTL LEC Result Processing

	2.3 Standard Cells Automatic Metal Only ECO Flow
	2.3.1 Metal Only Functional ECO: Standard Cells Spare Gates Mapping
	2.3.1.1 Introduction
	2.3.1.2 Steps in Metal Only ECO
	2.3.1.3 Spare Gates and Combinations
	2.3.1.4 Mapping Process
	2.3.1.5 Handling Different Flop Types
	2.3.1.6 Conclusion

	2.3.2 Spare Gates Synthesis
	2.3.3 Spare Gates Number and Distribution
	2.3.4 Files and data requirements in Metal Only ECO
	2.3.5 Steps to do automatic Metal Only ECO
	2.3.6 Example GOF script for Metal Only ECO
	2.3.7 Run and debug for Metal Only ECO
	2.3.8 Gated clocks in Automatic Metal Only ECO

	2.4 Metal Configurable Gate Array Cells ECO Flow
	2.4.1 Gate Array Cell Base Tile
	2.4.2 Gate Array Automatic Mapping
	2.4.3 Files and data requirements in Gate Array ECO
	2.4.4 Steps to do gate array spare cells ECO
	2.4.5 Example GOF script for gate array cells ECO flow
	2.4.6 TCL output file format after Gate Array ECO
	2.4.7 Run and Debug in Gate Array ECO

	2.5 Find Equal Nets between RTL and Netlist
	2.5.1 Example script to find equal nets
	2.5.2 GUI Mode to find equal nets

	2.6 Script Mode Full Layers Manual ECO Flow
	2.6.1 Files and data requirements in Manual ECO
	2.6.2 Steps to do Manual ECO In Scripts
	2.6.3 Manual ECO APIs list
	2.6.4 Example GOF script for Manual ECO
	2.6.5 Run and debug in Manual ECO
	2.6.6 Handle repetitive work
	2.6.7 Special characters

	2.7 Script Mode Metal Only Manual ECO Flow
	2.7.1 Files and data requirements in Metal Only Manual ECO
	2.7.2 Example GOF script for Manual Metal Only ECO
	2.7.3 Run and debug in Metal Only Manual ECO

	2.8 GUI Mode Full Layers ECO Flow
	2.8.1 Start up GOF in GUI Mode
	2.8.2 Create Partial Schematic
	2.8.3 Do ECO on schematic
	2.8.4 Save ECO in GUI Mode

	2.9 GUI Mode Metal Only ECO Flow
	2.9.1 Methods for Metal Only ECO
	2.9.2 Setup and use cases

	2.10 Report Timing
	2.10.1 Report Timing APIs
	2.10.2 Timing before ECO
	2.10.3 Timing after ECO

	3 GOF Formal: Fault Verification Tool
	3.1 GOF Formal
	3.1.1 Single Point Fault and Latent Fault
	3.1.2 Fault Model
	3.1.3 Cone of Influence
	3.1.4 SPFM and LFM Calculation
	3.1.5 Rough Method by COI Analysis
	3.1.6 Faults Injection Formal Verification
	3.1.7 FUSA Metrics Improvement

	3.2 FUSA Example Code
	3.2.1 Script for SPFM and LFM Calculation
	3.2.2 FUSA Debug One Fault

	4 Script Mode Detail Features
	4.1 GOF Script Interface
	4.1.1 Get Help for APIs
	4.1.2 GOF Script APIs feature list
	4.1.3 Full API list
	4.1.4 API grouping
	4.1.4.1 Netlist Browse APIs
	4.1.4.2 Automatic ECO APIs
	4.1.4.3 File IO APIs
	4.1.4.4 Manual ECO APIs
	4.1.4.5 AI Agent enabled APIs

	4.1.5 APIs Detail usage

	4.2 String Handling In Script Mode
	4.2.1 Single quote and double quote
	4.2.2 Instance and net with backslash

	4.3 Run and debug GOF script
	4.3.1 Command line
	4.3.2 GOF Shell
	4.3.3 Run in GUI mode
	4.3.4 Fast schematic launch
	4.3.5 Break points for debug
	4.3.6 Counter-example back-annotated to schematic

	4.4 Typical Manual ECO operations
	4.4.1 Insert gate to port
	4.4.1.1 Insert an invert to input port
	4.4.1.2 Insert to output port
	4.4.1.3 Insert inverts to multiple ports

	4.4.2 Insert gate to register instance pin
	4.4.2.1 Insert invert to flop data pin
	4.4.2.2 Insert invert to flop output pin
	4.4.2.3 Insert MUX to data pin of multiple flops

	4.4.3 Change flops to other type
	4.4.3.1 Change non-reset flop type to resettable flop

	4.4.4 Insert gate to hierarchical instance pin
	4.4.4.1 Insert inverts to hierarchical instance pins
	4.4.4.2 Insert AND to hierarchical instance pins

	5 GOF LEC: Logic Equivalence Checking Tool
	5.1 GOF LEC Overview
	5.1.1 Netlist to Netlist LEC
	5.1.2 RTL to Netlist LEC

	6 GOF Debug: Netlist Debug and Schematic
	6.1 GofViewer
	6.1.1 Log Window
	6.1.2 File Menu
	6.1.2.1 Load Design
	6.1.2.2 Reload Design
	6.1.2.3 Open Other Netlist
	6.1.2.4 Open Log Window
	6.1.2.5 Exit

	6.1.3 Find Menu
	6.1.3.1 Search
	6.1.3.2 Goto Line Number
	6.1.3.3 Report Area
	6.1.3.4 Report Leakage
	6.1.3.5 Report Leaf Cells
	6.1.3.6 Report Submodules
	6.1.3.7 Statistic of Current Design
	6.1.3.8 List Library
	6.1.3.9 List Context for Leaf Cell

	6.1.4 Commands Menu
	6.1.4.1 Launch GofTrace Schematic
	6.1.4.2 Launch GofTrace with Gate
	6.1.4.3 Launch Layout Viewer
	6.1.4.4 Launch GofCall Script Interface
	6.1.4.5 Spare Cells

	6.1.5 Options Menu
	6.1.5.1 Hierarchy Window Font
	6.1.5.2 Netlist Window Font
	6.1.5.3 Dump Waveform Restore File
	6.1.5.4 Setup

	6.1.6 Help Menu
	6.1.6.1 General
	6.1.6.2 About
	6.1.6.3 nandigits.co/gof_manual.php
	6.1.6.4 Read Ethernet Mac Address

	6.1.7 Keyboard Shortcuts
	6.1.7.1 Access Menu
	6.1.7.2 Functions access

	6.1.8 Selection Status
	6.1.9 Netlist Window Pop Menu
	6.1.9.1 Search
	6.1.9.2 Copy Selected to
	6.1.9.3 Find Equal Nets of the selected Reference Net
	6.1.9.4 Driver of the selected net
	6.1.9.5 List Connectivity of the selected net
	6.1.9.6 List Fanin EndPoints
	6.1.9.7 List Fanout EndPoints
	6.1.9.8 Parent Module
	6.1.9.9 List Context

	6.1.10 Hierarchy Window Pop Menu
	6.1.10.1 Show Definition
	6.1.10.2 Show Calling
	6.1.10.3 Report Area of the selected design
	6.1.10.4 Report Leakage of the selected design
	6.1.10.5 Report Leaf Cells of the selected design
	6.1.10.6 Report Submodules of the selected design
	6.1.10.7 Statistic of the selected design
	6.1.10.8 Edit Module of the selected design
	6.1.10.9 Save Module of the selected design
	6.1.10.10 Goto Line Number

	6.2 GofTrace
	6.2.1 Mouse buttons usage
	6.2.1.1 Mouse Left Button
	6.2.1.2 Mouse Middle Button
	6.2.1.3 Mouse Right Button

	6.2.2 File Menu
	6.2.2.1 Save
	6.2.2.2 Open
	6.2.2.3 Print
	6.2.2.4 Exit

	6.2.3 Schematic Menu
	6.2.3.1 New Schematic
	6.2.3.2 List Gate
	6.2.3.3 Load Gate
	6.2.3.4 Load Gate Driving Net
	6.2.3.5 List Selected Instances
	6.2.3.6 List Selected Wires
	6.2.3.7 List Selected Modules
	6.2.3.8 List Selected Instances Definitions
	6.2.3.9 List Selected Gates Types
	6.2.3.10 Zoom In
	6.2.3.11 Zoom Out
	6.2.3.12 Zoom to
	6.2.3.13 Find Gates on Schematic
	6.2.3.14 Find Nets on Schematic
	6.2.3.15 Undo Schematic Operations
	6.2.3.16 Place and Route
	6.2.3.17 Create PS/PDF File

	6.2.4 Commands Menu
	6.2.4.1 View Gates in Layout
	6.2.4.2 Load Layout Files
	6.2.4.3 Launch GofCall Script Interface
	6.2.4.4 Spare Cells

	6.2.5 Options Menu
	6.2.5.1 Increase Font Size
	6.2.5.2 Decrease Font Size
	6.2.5.3 Show Port
	6.2.5.4 Show Wire
	6.2.5.5 Show Title
	6.2.5.6 Show Type
	6.2.5.7 Show Connections
	6.2.5.8 Show Comment
	6.2.5.9 Dump Waveform Restore File
	6.2.5.10 Save String to Clipboard
	6.2.5.11 Cursor Mode
	6.2.5.12 Line Edit Mode
	6.2.5.13 Setup

	6.2.6 Help Menu
	6.2.6.1 General
	6.2.6.2 About
	6.2.6.3 nandigits.co/gof_manual.php

	6.2.7 Keyboard Shortcuts
	6.2.7.1 Access Menu
	6.2.7.2 Functions access

	6.2.8 Selection Status
	6.2.9 GofTrace Pop Menu
	6.2.9.1 Driver Until Non Buffer
	6.2.9.2 Drivers of Logic Cone
	6.2.9.3 Copy Selected to
	6.2.9.4 Trace Scan Chain
	6.2.9.5 Nets Equivalence Check
	6.2.9.6 Find Equal Nets of the selected Net
	6.2.9.7 Add Comments
	6.2.9.8 Find Gates on Schematic
	6.2.9.9 Find Nets on Schematic
	6.2.9.10 Place and Route
	6.2.9.11 Find selected in GofViewer
	6.2.9.12 Edit Gate Display
	6.2.9.13 List Logic for the Selected Leaf Cell
	6.2.9.14 List Context for the Selected Leaf Cell
	6.2.9.15 List Definition for the Selected Instance
	6.2.9.16 Load Instance Similar to the Selected Instance
	6.2.9.17 Equivalent Symbol
	6.2.9.18 Delete

	6.3 GUI GofECO
	6.3.1 ECO Menu
	6.3.1.1 Enable ECO and ECO Preferences
	6.3.1.2 Insert Gates
	6.3.1.3 Replace Gates
	6.3.1.4 Add Gates
	6.3.1.5 Delete Selected Items
	6.3.1.6 Upsize Drive Strength
	6.3.1.7 Downsize Drive Strength
	6.3.1.8 Undo ECO Operations
	6.3.1.9 Add Connection
	6.3.1.10 Save ECO

	6.3.2 Metal Only ECO
	6.3.2.1 Metal ECO, mode 1
	6.3.2.2 Metal ECO, mode 2
	6.3.2.3 Metal ECO, mode 3
	6.3.2.4 Metal ECO, mode 4

	6.4 LayoutViewer
	6.4.1 File Menu
	6.4.1.1 Capture in PDF
	6.4.1.2 Exit

	6.4.2 Commands Menu
	6.4.2.1 Clear Circuit Markers
	6.4.2.2 Clear Search Markers
	6.4.2.3 New Schematic

	6.4.3 OptionsMenu
	6.4.3.1 Show Grid
	6.4.3.2 Show Instance
	6.4.3.3 Show Module
	6.4.3.4 Setup

	6.4.4 Help Menu
	6.4.4.1 Help on LayoutViewer

	6.4.5 LayoutViewer Pop Menu
	6.4.5.1 Clear Circuit Markers
	6.4.5.2 Clear Searching Markers
	6.4.5.3 Copy Selected to

	6.4.6 Keyboard and mouse combination
	6.4.6.1 Ctrl key to measure length
	6.4.6.2 Shift key to select multiple markers

	6.4.7 Mouse operations
	6.4.8 Select color buttons
	6.4.9 Search function

	7 GOF AI: Agentic AI Platform
	7.1 AI-Powered Natural Language ECO: Revolutionizing Netlist Modifications
	7.1.1 How Natural Language Translation Works
	7.1.2 Benefits of AI-Powered Natural Language ECO
	7.1.3 Example code

	7.2 AI-Powered Spec-to-RTL Conversion and Incremental Modification
	7.2.1 Full Specification to RTL Generation
	7.2.2 Incremental RTL Modification from Partial Specifications
	7.2.3 Ensuring High RTL Accuracy with a Multi-faceted Scoring System
	7.2.4 Example code

	7.3 Non-equivalent points debug automation by AI Agent
	7.3.1 AI Agent Transformation
	7.3.2 Example code
	7.3.3 Future Work

	8 Appendix A
	8.1 APIs Detail Usage
	add_mapped_instance
	ai_debug_noneq
	buffer
	change_gate
	change_net
	change_pin
	change_port
	check_design
	compare
	compare_nets
	convert_gated_clocks
	create_clock
	create_equation
	create_pin_mapping_json_file
	create_reset
	current_design
	current_instance
	del_gate
	del_net
	del_port
	dft_drc
	do_auto_change
	do_smart_query
	elab_rtl
	elaborate
	exist_inst
	exist_wire
	find_equal_nets
	fix_design
	fix_logic
	flatten_modules
	get_cell_cofactors
	get_cell_info
	get_cells
	get_conns
	get_coord
	get_definition
	get_driver
	get_drivers
	get_instance
	get_instances
	get_leaf_pin_dir
	get_leafs_count
	get_lib_cells
	get_loads
	get_loads_phase
	get_logic_cone
	get_modules
	get_net_of
	get_nets
	get_path
	get_pins
	get_ports
	get_ref
	get_resolved
	get_roots
	get_scan_flop
	get_spare_cells
	get_spare_in_use
	gexit
	gof_version
	gprint
	insert_gate
	is_leaf
	is_pin_masked
	is_scan_flop
	is_seq
	list_wireload
	map_spare_cells
	new_gate
	new_net
	new_port
	place_gate
	place_port
	pop_top
	post_recovery
	preserve_modules
	push_top
	read_ctl
	read_def
	read_design
	read_file
	read_lef
	read_library
	read_rtl
	read_rtlpatch
	read_sdf
	read_sub_module_netlist
	read_sub_module_svf
	read_svf
	read_vcd
	rename_net
	replace_sub_module_netlist
	replace_sub_module_svf
	report_eco
	report_spares
	report_timing
	restore_session
	rtl_compare
	rtl_lec
	run
	run_lec
	run_nl
	save_session
	sch
	set_ai_config
	set_ai_remote_server
	set_auto_fix_floating
	set_bfix
	set_blackbox
	set_bound_opti
	set_buffer
	set_buffer_distance
	set_check_isolation
	set_clock_uncertainty
	set_cluster_command
	set_cluster_timeout
	set_constraints
	set_cutpoint_thresh
	set_cutpoint_ultra
	set_define
	set_detect_points
	set_disable_cross_hierarchy_merge
	set_disable_lib_cache
	set_dont_fix_modules
	set_dont_use
	set_eco_effort
	set_eco_point_json
	set_equal
	set_error_out
	set_exit_on_error
	set_exit_on_warning
	set_false_path
	set_floating_as_zero
	set_flop_default_eco
	set_flop_merge_enable
	set_high_effort
	set_ignore_instance
	set_ignore_network
	set_ignore_output
	set_ignore_pin
	set_inc_dirs
	set_initial_trans
	set_input_delay
	set_input_transition
	set_inside_mod
	set_inst
	set_inv
	set_invert
	set_keep_format
	set_keep_tree
	set_keypoints_rep_in_ref
	set_leaf
	set_log_file
	set_low_effort
	set_mapped_point
	set_mapping_method
	set_max_lines
	set_max_loop
	set_mod2mod
	set_mu
	set_multibit_blasting
	set_multibit_output
	set_net_constant
	set_no_patch_opt
	set_noexact_pin_match
	set_observe_points
	set_one_fault
	set_only_use
	set_output_delay
	set_output_load
	set_phase_adjust_en
	set_phase_inv
	set_physical_aware
	set_pin_constant
	set_power
	set_preserve
	set_quiet
	set_recovery_distance
	set_remove_undsc_in_ref
	set_rtl_eco_full_hier_fan
	set_save_mapped_instance
	set_scan_pairs
	set_sn_vs_rn
	set_solver_timeout
	set_tiehi_net
	set_tielo_net
	set_time_frame_limit
	set_top
	set_top_ref
	set_tree
	set_user_match
	set_verbose
	set_wireload
	set_write_verilog_remove_backslash
	set_write_verilog_uniquify
	set_xm_flop_merge_enable
	setup_eco
	source
	spec_to_rtl
	start_gui
	stitch_scan_chain
	suppress_errors
	suppress_warnings
	swap_inst
	undo_eco
	verify_faults
	verify_state
	write_compare_points
	write_dcsh
	write_formality_help_files
	write_perl
	write_soce
	write_spare_file
	write_tcl
	write_verilog

	9 Appendix B
	9.1 GOF Command Options
	9.2 Command line Examples

	10 Appendix C
	10.1 Fatal codes
	10.2 Error codes
	10.3 Warning codes
	10.4 GUI warning codes

